• Title/Summary/Keyword: Smart Board

Search Result 275, Processing Time 0.025 seconds

Implementation of Smart Control System based on Intelligent Dimming with LEDs

  • Lee, Geum-Boon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.127-133
    • /
    • 2016
  • In this paper, an intelligent dimming control system is designed and implemented with the human visual response function using CDS sensor, PIR sensor and temperature sensor, etc. The proposed system is designed to detect a moving object by PIR sensor and to control the LED dimming considering the human visual response. Also, the dimming of LED light can modulate on the app, and simultaneously control dimming in real-world environments with smart phone app. A high-temperature warning or a fire hazard information is transmitted to user's smart phone according to sensor values and Data graph are provided as part of data visualization. Connecting the hardware controller, the proposed intelligent smart dimming control system is expected to contribute to the power reduction interior LED, smart grid building and saving home combining with internet of things.

Smart Home System Using Internet of Things

  • Santoso, Leo Willyanto;Lim, Resmana;Trisnajaya, Kevin
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.60-65
    • /
    • 2018
  • The Internet of Things (IoT) is happening now. By implementing IoT, we can build smart home system. Smart home is an application that is a combination of technology and services that specialize in the home environment with specific functions aimed at improving the efficiency, comfort and security of the occupants. Smart homes filled with connected products are loaded with possibilities to make our lives easier, more convenient, and more comfortable. This intelligent home system uses a microcontroller to process functions that provided by smart home system, such functions as RFID for door access and PIR sensors for motion detection. By using Android users could control the sensors anytime and anywhere. Microcontroller used is Arduino IDE with WeMos D1R2 board. Based on the testing process, there was a successful communication between the components of the device, sensors, and Android devices. Users could open or close the solenoid, users can also turn off or turn on electronic devices using Android.

A study on development of the intelligent production status boards using Smart TV (스마트TV를 활용한 지능형 생산현황판 개발에 관한 연구)

  • Cho, Yong-Wook;Sim, Jin-Bum
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.277-282
    • /
    • 2012
  • A Smart TV device is either a television set with integrated internet capabilities or a set-top box for television that offers more advanced computing ability and connectivity than a contemporary basic television set. In recent years, there has been a popularity rose up on Smart TV (Smart Television) usage at home. This paper present the intelligent production status boards using features and functions of smart TV in shop floor. With the proposed status boards, we can reduce installation and operating costs of the existing production status boards. In addition, This article present the system that can line monitoring without equipments as CC TV.

Power Monitoring System of Smart Homes using Embedded System (임베디드 시스템을 이용한 스마트 홈 전력 모니터링 시스템)

  • Kim, Woo-Sung;Park, Kyeong-Jin;Park, Sang-Cho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5201-5206
    • /
    • 2014
  • A 'Light switch remote control' was made with an android smartphone and a smart light switch, which can use wireless communication on this paper. A smart light switch uses an embedded board and Bluetooth communication to receive and transmit data, and it receives and sends data again with a smartphone and wireless communication. This study used the flexibility of sensors that could be added later to utilize the embedded board as a gateway. This skill is being serviced now in a new apartment and building. On the other hand, existing households that do not support this skill can use it if they change only the switch. In conclusion, this system ensured user convenience and flexibility of system.

Research of Smart Integrated Control Board Function Improvement for Personal Electric Wheelchair's Safe Driving (1인용 전동휠체어의 안전 운행을 위한 지능형 통합 제어보드 기능 개선 연구)

  • Kim, Jinsul;Cho, Young-Bin
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1507-1514
    • /
    • 2018
  • The purpose of this study was to propose a functional improvement solution of integrated control board for safe driving of Smart electric wheelchair for a single person. In the case of existing electric wheelchair products in Korea and elsewhere, safety-related functions or devices are not included in many cases. Therefore, the incidence of electric wheelchair-related accidents is continuously increasing in the current situation in which the elderly and the disabled people have been continuously increased. However, currently only high and middle-priced products are equipped with basic safety devices in electric wheelchairs, so low-priced products require safety related functions. Therefore, sensing obstacles that the user can not recognize while moving an electric wheelchair and detecting automatically the terrain change to control the motor by developing a smart control platform. This provides an integrated control board that can be applied to various electric wheelchairs for more stable driving.

Design and Implementation of a Control System for the Interleaved Boost PFC Converter in On-Board Battery Chargers (차량 탑재형 배터리 충전기의 인터리브드 부스트 PFC 컨버터 제어시스템 설계 및 구현)

  • Lee, Jun Hyok;Jung, Kwang-Soon;Lee, Kyung-Jung;Jung, Jae Yeop;Kim, Ho Kyung;Hong, Sung-Soo;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.843-850
    • /
    • 2016
  • In this paper, we propose a digital controller design process for the interleaved type of a boost PFC (Power Factor Correction) converter which can disperse the heat of the switching devices due to the interleaved topology. We establish a mathematical model of a boost PFC converter and propose a controller design method based on the root locus. The performance of the designed controller is verified by simulations. The measurement of the input voltage, inductor currents, and the converter output link voltage are needed for the control of the converter system which consists of a power unit and a control unit where a high-performance 32-bit microcontroller is used. The adjustment of A/D conversion timing is also needed to avoid high frequency noise generated when the switches on/off. It is illustrated by the real experiments that the designed control system with the properly adjusted ADC timing satisfies the given performance specifications of the interleaved boost PFC converter in the on-board slow battery charger.

Characteristic Validation of High-damping Printed Circuit Board Using Viscoelastic Adhesive Tape (점탄성 테이프를 적용한 고댐핑 적층형 전자기판의 기본 특성 검증)

  • Shin, Seok-Jin;Jeon, Su-Hyeon;Kang, Soo-Jin;Park, Sung-Woo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.383-390
    • /
    • 2020
  • Wedge locks have been widely used for spaceborne electronics for mounting or removal of a printed circuit board (PCB) during integration, test and maintenance process. However, it can basically provide a mechanical constraint on the edge of the board. Thus, securing a fatigue life of solder joint for electronic package by limiting board deflection becomes difficult as the board size increases. Previously, additional stiffeners have been applied to reduce the board deflection, but the mass and volume increases of electronics are unavoidable. To overcome the aforementioned limitation, we proposed an application of multi-layered PCB sheet with viscoelastic adhesive tapes to implement high-damping capability on the board. Thus, it is more advantageous in securing the fatigue life of package under launch environment compared with the previous approach. The basic characteristics of the PCB with the multi-layered sheet was investigated through free-vibration tests at various temperatures. The effectiveness of the proposed design was validated through launch vibration test at qualification level and fatigue life prediction of electronic package based on the test results.

Development and Evaluation of Smart Roundabout Using Connected Vehicle (Connected Vehicle을 이용한 Smart Roundabout의 개발과 평가)

  • Kim, Hoe Kyoung;Lee, Young Bin;Yoon, Chil Yong;Oh, Yun Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.243-250
    • /
    • 2014
  • Modern roundabouts referred to as relatively safer and more efficient traffic facility than the signalized intersections have been recently deployed and operated and accordingly more research efforts to improve its safety and efficiency have been made so far. This paper introduces a new traffic information system named as Smart Roundabout coupled with Connected Vehicle technique like Vehicle-to-Roadside communication, which has not been attempted before and evaluates its performance with a microscopic simulation model, VISSIM. The proposed system functions to collect driving information of circulating vehicles in the roundabout such as location, speed, critical headway, etc. and help approaching vehicles decide whether to enter the roundabout with an on-board equipment instrumented in the individual vehicle on the basis of calculated gap acceptance of interest. This new system is expected to secure more safety and increase the capacity of the modern roundabout.

Autonomous evaluation of ambient vibration of underground spaces induced by adjacent subway trains using high-sensitivity wireless smart sensors

  • Sun, Ke;Zhang, Wei;Ding, Huaping;Kim, Robin E.;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • The operation of subway trains induces secondary structure-borne vibrations in the nearby underground spaces. The vibration, along with the associated noise, can cause annoyance and adverse physical, physiological, and psychological effects on humans in dense urban environments. Traditional tethered instruments restrict the rapid measurement and assessment on such vibration effect. This paper presents a novel approach for Wireless Smart Sensor (WSS)-based autonomous evaluation system for the subway train-induced vibrations. The system was implemented on a MEMSIC's Imote2 platform, using a SHM-H high-sensitivity accelerometer board stacked on top. A new embedded application VibrationLevelCalculation, which determines the International Organization for Standardization defined weighted acceleration level, was added into the Illinois Structural Health Monitoring Project Service Toolsuite. The system was verified in a large underground space, where a nearby subway station is a good source of ground excitation caused by the running subway trains. Using an on-board processor, each sensor calculated the distribution of vibration levels within the testing zone, and sent the distribution of vibration level by radio to display it on the central server. Also, the raw time-histories and frequency spectrum were retrieved from the WSS leaf nodes. Subsequently, spectral vibration levels in the one-third octave band, characterizing the vibrating influence of different frequency components on human bodies, was also calculated from each sensor node. Experimental validation demonstrates that the proposed system is efficient for autonomously evaluating the subway train-induced ambient vibration of underground spaces, and the system holds the potential of greatly reducing the laboring of dynamic field testing.

Raspberry Pi Based Smart Adapter's Design and Implementation for General Management of Agricultural Machinery (범용 농기계관리를 위한 라즈베리 파이 기반의 스마트어댑터 설계 및 구현)

  • Lee, Jong-Hwa;Cha, Young-Wook;Kim, Choon-Hee
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.31-40
    • /
    • 2018
  • We designed and implemented the attachable smart adapter for the general management of each company's agricultural machine regardless of whether it is equipped with a CAN (Controller Area Network) module. The smart adapter consists of a main board (Raspberry Pi3B), which operates agricultural machine's management software in Linux environment, and a self-developed interface board for power adjustment and status sensing. For the status monitoring, a sensing interface using a serial input was defined between the smart adapter and the sensors of the agricultural machine, and the state diagram of the agricultural machine was defined for diagnosis. We made a panel to simulate the sensors of the agricultural machine using the switch's on/off contact point, and confirmed the status monitoring and diagnostic functions by inputting each state of the farm machinery from the simulator panel.