• 제목/요약/키워드: Smart Actuator

검색결과 315건 처리시간 0.036초

서비스 로봇을 위한 센서 네트워크 기반 스마트 환경 구축 (Construction of a Sensor Network-based Smart Environment for Service Robots)

  • 백승호;박재한;고재한;백문홍
    • 로봇학회논문지
    • /
    • 제2권4호
    • /
    • pp.334-340
    • /
    • 2007
  • This paper introduces a prototype smart home environment that is built in the research building to demonstrate the feasibility of a robot-assisted future home environment. Localization, navigation, object recognition and handling are core functionalities that an intelligent service robot should provide. A huge amount of research effort has been made to make the service robot perform these functions with its own sensors, actuators and a knowledge base. With all complicated configuration of sensors, actuators and a database, the robot could only perform the given tasks in a predefined environment or show the limited capabilities in a natural environment. We started a smart home environment for service robots for simple service robots to provide reliable services by communicating with the environment through the wireless sensor networks. In this paper, we introduce various types of smart devices that are developed for assisting the robot in the environment by providing sensor and actuator capabilities. In addition, we present how the devices are integrated to constitute the smart home environment for service robots.

  • PDF

자기유변탄성체 액츄에이터의 마찰특성 연구 (A Study of Friction Characteristics in Magneto-Rheological Elastomer)

  • 이득원;이철희;김철현;조원오
    • Tribology and Lubricants
    • /
    • 제27권4호
    • /
    • pp.213-217
    • /
    • 2011
  • In this study, friction characteristics using elastomeric actuator with Magneto-rheological (MR) materials are identified. Typically, Magneto-rheological materials are divided into two groups by MR fluid in fluid state and MR elastomer in solid state like rubber. The stiffness characteristics of Magneto-rheological material can be changed as magnetic field is applied. MR fluid has been applied to various industry fields such as to brake, clutch, damper, engine mount and etc. However, MR fluid has been used under the sealed condition to prevent leaking issues. In order to overcome these problems, MR elastomer that has same property as MR fluid has been developed and studied. MR elastomer mainly consists of polymer material such as natural rubber or silicon rubber with particles that can be polarized with magnetic field. And it is called as a smart material since its stiffness and damping characteristics can be changed. In this study, MR elastomer is produced and pin-on-disc tests are carried out to identify the friction characteristics of the material. Several test conditions are applied to evaluate the feasibility to use as a smart actuator in the field of vibration control.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

지능형 공정제어 시스템 적용을 위한 ER 작동기의 진동제어 특성에 관한 연구 (Study on the Vibration Control Characteristics of ER Actuator for Application in Intelligence Process Control Systems(PLC))

  • 장성철
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.49-55
    • /
    • 2005
  • This paper presents experiments on the evaluation of characteristics of ER fluids used for vibration control of application in intelligence type process control systems. Dynamic characteristics of the actuator(beam) embedded with the ER fluid can be controlled by changing the strength of the electric field applied on the ER fluids, thus provides a mean to avoid the resonance. In case electric field is supplied to the smart structure with ER fluids, vibration energy is dissipated more than the beam without electric field, because particles in ER fluid form a chain structure in the presence of electric field. The damping and stiffness of the beam with ER fluid are increased when the applied electric field increases. The characteristics of damping and stiffness of the ER fluid with various electric field strength were investigated by conducting a vibration test of the beam with ER fluid. If it applies characteristics of the ER fluids, it will be able to apply in the PLC control system for the vibration which occurs from process system.

  • PDF

굽힘하중이 가해지는 복합재 평판 자유단에서의 박리응력 감소 연구 (Reduction of Free Edge Peeling Stress in Composite Laminates under Bending Load)

  • 정석주;승명균;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제28권5호
    • /
    • pp.497-502
    • /
    • 2015
  • 본 논문에서는 굽힘하중이 가해지는 스마트 복합재 적층판의 자유단에서 발생하는 박리응력을 압전 작동기를 이용해서 감소시키는 방법을 응력함수를 이용해 해석하는 방법을 제안하였다. 전기-기계 연성에 의해 나타나는 지배방정식은 최소 보족일의 원리를 이용해 구하였다. 응력상태는 일반적인 고유치 해석과정을 통해 구하였다. 스마트 복합재 적층판의 자유단 박리응력은 압전 작동기를 이용해 감소시킬 수 있었다. cross-ply 복합재 적층판의 박리응력 감소가 angle-ply 복합재 적층판 보다 크게 나타났다.

광섬유 스마트 구조물의 개념을 이용한 교량상부 내진거동 측정 (Earthquake Movement Measurement of the Top of Bridge Pier Using Fiber Optic Smart Structure Concept)

  • 김기수;한인동
    • Composites Research
    • /
    • 제19권3호
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well-suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

초소형 스마트탄 최근기술 동향분석 (Recent Status on Miniature Smart-bullet Techniques)

  • 이성헌;조한진;조영기;방효충
    • 한국항공우주학회지
    • /
    • 제43권3호
    • /
    • pp.272-281
    • /
    • 2015
  • 초소형 스마트탄은 탄도를 수정하여 손쉽게 목표물을 타격할 수 있도록 고안된 개인 휴대용 유도미사일이다. 초소형 스마트탄은 유도미사일에 준하는 기능을 수행하는데 반하여 그 크기가 일반 병사들이 쉽게 휴대할 수 있도록 축소됨으로써 아군의 전력과 생존율을 크게 높일 수 있을 것으로 기대된다. 본 논문에서는 초소형 스마트탄의 탄도수정을 위해 사용된 구동장치를 중심으로 해외에서 선행된 기술개발 사례와 특허들을 수집해 보았다. 이를 바탕으로 초소형 스마트탄의 개발을 위한 소요기술들을 분석해 보고, 추후 개념설계를 위한 초석을 마련하였다.

A context-Aware Smart Home Control System based on ZigBee Sensor Network

  • Khan, Murad;Silva, Bhagya Nathali;Jung, Changsu;Han, Kijun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1057-1069
    • /
    • 2017
  • The applications of Wireless Sensor Networks (WSN) are progressively adopting for various smart home services such as home automation, controlling smart home household appliances, constrained application services in a smart home, etc. However, enabling a seamless and ubiquitous WSN communication between the smart home appliances is still a challenging job. Therefore, in this paper, we propose a smart home control system using an Actuator based ZigBee networking (AZNET). The working of the proposed system is further divided into three phases, 1) an interference avoidance system is adopted to mitigate the effect of interference caused due to the co-existence of IEEE 802.11x based wireless local area networks (WLAN) and WSN, 2) a sensor-based smart light control system is used to fulfill the light requirement in the smart home using the sunlight with light source, and 3) an autonomous home management system is used to regulate the usage time of the electronic appliances in the smart home. The smart is tested in real time environment to use the sunlight with light sources in a various time of the day. Similarly, the performance of the proposed smart home is verified through simulation using C# programming language. The results and analysis revealed that the proposed smart home is less affected by the interference and efficient in reducing the energy consumption of the appliances available in the smart home scenario.

폴리아닐린/탄소나노튜브 폴리머 액츄에이터의 모델링, 시뮬레이션 및 제어 (Modeling, Simulation, and Control of a Polyaniline/Carbon-Nanotube Polymer Actuator)

  • 손기원;이병주;김선정;김인영;김선일
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.348-354
    • /
    • 2007
  • Polymer actuators, which are also called as smart materials, change their shapes when electrical, chemical, thermal, or magnetic energy is applied to them and are useful in wide variety of applications such as microelectromechanical systems (MEMS), machine components, and artificial muscles. For this study, Polyaniline/carbon-nanotube polymer actuator that is one of electroactive polymer actuators was prepared. Since the nonlinear phenomena of hysteresis and a step response are essential considerations for practical use of polymer actuators, we have investigated the movement of the Polyaniline/carbon-nanotube polymer actuator and have developed an integrated model that can be used for simulating and predicting the hysteresis and a step response during actuation. The Preisach hysteresis model, one of the most popular phenomenological models of hysteresis, were used for describing the hysteretic behavior of Polyaniline/carbon-nanotube polymer actuator while the ARX method, one of system identification techniques, were used for modeling a step response. In this paper, we first expain details in preparation of the Polyaniline/carbon-nanotube polymer then present the mathematical description of our model, the extraction of the parameters, simulation results from the model, and finally a comparison with measured data.

형상기억합금 비틀림 튜브 작동기의 거동 해석 (Analyses of Behaviors of a Shape-Memory-Alloy Torque Tube Actuator)

  • 김준형;김철
    • 대한기계학회논문집A
    • /
    • 제34권8호
    • /
    • pp.1083-1089
    • /
    • 2010
  • 형상기억합금은 지능형 재료와 구조물에 널리 쓰인다. 큰 힘과 변위를 발생시키는 것이 특징이며 작동기, 소음 및 진동감쇠, 동역학적 튜닝, 형상의 변형 제어 등의 다양한 분야에 응용될 수 있다. 본 논문에 서는 형상기억합금튜브와 초탄성 스프링으로 구성된 형상기억합금 비틀림 작동기를 제안하였고 각각의 거동 특성을 알아보았다. 열전달 해석을 통해 저항열과 히터의 열을 동시에 형상기억합금튜브에 가하면 작동기의 성능을 더 향상시킬 수 있음을 확인하였다. 접촉 해석으로는 실제 작동기의 거동을 시뮬레이션하였고 정상적으로 작동함을 알 수 있었다. 3 차원 형상기억합금의 거동을 표현하기 위해 비선형 구성방정식을 유한요소 법으로 풀고 ABAQUS 의 U-MAT 기능을 이용하여 비선형 해석을 수행하였다.