• Title/Summary/Keyword: Smart ACA

Search Result 2, Processing Time 0.014 seconds

Electrical Interconnection with a Smart ACA Composed of Fluxing Polymer and Solder Powder

  • Eom, Yong-Sung;Jang, Keon-Soo;Moon, Jong-Tae;Nam, Jae-Do
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.414-421
    • /
    • 2010
  • The interconnection mechanisms of a smart anisotropic conductive adhesive (ACA) during processing have been characterized. For an understanding of chemorheological mechanisms between the fluxing polymer and solder powder, a thermal analysis as well as solder wetting and coalescence experiments were conducted. The compatibility between the viscosity of the fluxing polymer and melting temperature of solder was characterized to optimize the processing cycle. A fluxing agent was also used to remove the oxide layer performed on the surface of the solder. Based on these chemorheological phenomena of the fluxing polymer and solder, an optimum polymer system and its processing cycle were designed for high performance and reliability in an electrical interconnection system. In the present research, a bonding mechanism of the smart ACA with a polymer spacer ball to control the gap between both substrates is newly proposed and investigated. The solder powder was used as a conductive material instead of polymer-based spherical conductive particles in a conventional anisotropic conductive film.

ACA Based Image Steganography

  • Sarkar, Anindita;Nag, Amitava;Biswas, Sushanta;Sarkar, Partha Pratim
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.266-276
    • /
    • 2013
  • LSB-based steganography is a simple and well known information hiding technique. In most LSB based techniques, a secret message is embedded into a specific position of LSB in the cover pixels. On the other hand, the main threat of LSB-based steganography is steganalysis. This paper proposes an asynchronous-cellular-automata(ACA)-based steganographic method, where secret bits are embedded into the selected position inside the cover pixel by ACA rule 51 and a secret key. As a result, it is very difficult for malicious users to retrieve a secret message from a cover image without knowing the secret key, even if the extraction algorithm is known. In addition, another layer of security is provided by almost random (rule-based) selection of a cover pixel for embedding using ACA and a different secret key. Finally, the experimental results show that the proposed method can be secured against the well-known steganalysis RS-attack.

  • PDF