• Title/Summary/Keyword: Small-tube flow pattern

Search Result 9, Processing Time 0.053 seconds

An Experimental Study on Flow Characteristics of R134a in a Small Diameter Tube (세관내 R-134a의 유동특성에 관한 실험적 연구)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1307-1312
    • /
    • 2007
  • The flow characteristics of R-134a in a small diameter tube was investigated experimentally. An experimental apparatus was consisted of a magnetic gear pump, an evaporator, a sight-glass, a condenser and a measurement instruments. The sight-glass for flow pattern observations was located at the inlet and outlet of the evaporator. The experiment was carried out to show the flow characteristics of R-134a in a small diameter tube. Mass flux of refrigerants was ranged from 100 to 1000 $kg/m^2s$, the saturation temperature was $30^{\circ}C$. In the flow patterns during evaporation, the annular flow in a 2 mm inner diameter tube occurred at a relatively lower quality and mass velocity, compared to that in a 8 mm inner diameter tube. The evaporation flow pattern in a small diameter tube has been shown major deviations with the Baker, Mandhane and Taitel-Dutler's flow pattern maps but it was similar to the Dobson's flow pattern map.

  • PDF

Study on the Flow Characteristics of R-22, R-l34a in Small Diameter Tubes (R-22 및 R-134a의 세관 내 유동 특성에 관한 연구)

  • 홍진우;정재천;장승환;권옥배;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.756-765
    • /
    • 2002
  • Experimental work was performed on the flow characteristics of R-22 and R-l34a in small diameter tubes. The experimental apparatus was made up of liquid pump, pre-heater, sight-glass, condenser and measurement instruments. The sight-glass for flow pattern observations was located at the outlet of the pre-heater. The experiment was carried out to show the flow characteristics of R-22 and R-l34a. Data were taken with test conditions in the following ranges; the mass flux was ranged from 100 to 1,000 kg/$m^2s$, the saturation temperature was $30^{\circ}C$ and the vapor quality was ranged from 0.1 to 0.9. The main results were summarized as follows; In the flow patterns during evaporation, the annular flow in a 2 mm inner diameter tube occurred at a relatively lower quality and mass velocity, compared to the flow in a 8mm inner diameter tube. The evaporation flow in small diameter tubes has been shown major deviations with the Mandhane, Taitel-Dukler's and Wambs-ganss' flow pattern maps but it was similar to the Dobson's flow pattern map.

A Study on Performance Characteristics of R134a Variation with a Capillary Tube Diameter and Length in a Domestic Small multi Refrigerator [Kim_Chi Refrigerator] (모세관 내경 축소에 따른 소형멀티 냉동시스템의 성능특성변화)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1598-1603
    • /
    • 2004
  • This paper is an experimental study on the performance characteristic with a variation of capillary diameter and length. The performance characteristic of a refrigeration system is predicted that it is occurring changes of flow pattern and pressure drop in a capillary tube because of reduction of capillary diameter 0.74 to 0.6 mm. The difference between experimental results and analytical results is mainly caused by values of friction factor for using to calculate pressure drop through a small diameter capillary tube under 0.74mm. The experimental equation is derived from capillary tube test data using curve fitting method.

  • PDF

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

Two-Phase Flow Patterns of $CO_{2}$ in a Heated Narrow Rectangular Channel (미세사각채널에서 $CO_{2}$의 이상유동 양식에 관한 연구)

  • Kim Yongchan;Yun Rin;Chung Jin Taek
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.2
    • /
    • pp.66-72
    • /
    • 2004
  • The heat transfer and pressure drop characteristics of $CO_{2}$ are substantially different from those for CFC and HCFC refrigerants. In addition, geometric effects on two-phase flow patterns of $CO_{2}$ are also very significant in many respects. Therefore, two-phase flow patterns of $CO_{2}$ in a narrow rectangular channel or a small diameter tube whose gap size or hydraulic diameter is less than 2 mm are very important to understand heat transfer characteristics and to develop an appropriate heat transfer correlation. In the present study, the evaporation process of $CO_{2}$ in a narrow rectangular channel is visualized at various test conditions, and then the effects of operating conditions are analyzed.

  • PDF

An Experimental Study on the Two-Phase Flow Pressure Drop Within Horizontal Rectangular Channels with Small Gap Heights (미세 수평 사각유로에서의 2상 유동 압력강하에 관한 실험적 연구)

  • Lee, Han Ju;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.637-645
    • /
    • 1999
  • Horizontal two-phase flow pressure drop within rectangular channels with small gap heights have been examined experimentally. The gap heights range from 0.4mm to 4mm corresponding to aspect ratios(the channel height divided by the width) from 0.02 to 0.2. Water and air were used as the test fluids with the superficial velocity ranges being 0.03-2.39m/s and 0.05-18.7m/s, respectively. The experimental results In rectangular channels were compared with the Lockhart-Martinelli correlation, which are widely used for conventional round tube. The Lockhart-Martinelli correlation turned out to be Inappropriate to represent the present experimental data. In this respect, considering the aspect ratio and gap-height effects, an empirical correlation on two-phase flow pressure drop was proposed. The proposed correlation successfully covers the bubbly, plug, slug and annular flow regimes.

A Study of Measurement and Analysis of Flow Distribution in a Close-Coupled Catalytic Converter (근접장착식 촉매장치의 유동분포 측정 및 해석에 관한 연구)

  • Jo, Yong-Seok;Kim, Deuk-Sang;Ju, Yeong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.533-539
    • /
    • 2001
  • In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a glow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC.

Condensation Heat Transfer Characteristics of R-410A as an Alternative R-22 in the Condenser with Small Diameter Tubes (세관을 사용한 응축기에서 R-22의 대체냉매인 R-410A의 응축 열전달 특성)

  • Son, Chang-Hyo
    • Clean Technology
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2007
  • An experimental study to investigate the condensing heat transfer characteristics of small diameter horizontal double pipe heat exchangers with R-22 and R-410A was performed. Experimental facility was constructed to calculate and observe HTC(heat transfer coefficients), flow patterns and pressure drop. The main components include a liquid pump, an evaporator, a condenser(test section), a sight-glass, pressure taps and measurement apparatus. Two pipes of different diameters are tested; One 5.35 mm ID 0.5 mm thick, the other 3.36 mm ID 0.7 mm thick. The mass flow rate ranged from 200 to $500\;ks/m^2{\cdot}s$ and heating capacity were form 1.0 to 2.4 kW. The flow patterns of R-22 and R-410A were observed with a high speed camera through the sight-glass. The tests revealed that HTC of R-410A was higher than that of R-22 by maximum 5%. Annular pattern was observed for the most cases but stratified flow was also detected when x<0.2. The pressure drop in 3.36 mm ID pipe was higher than that of 5.35 mm by $30{\sim}50%$. Comparing with previous correlations such as Shah, Fujii and Soliman's, Fujii' showed the best good agreement with my data with a maximum deviation of 40%.

  • PDF

Air-side Performance of Louver-Finned Flat Aluminum Heat Exchangers at a Low Velocity Region (저속 영역에서 루버휜이 장착된 평판관형 알루미늄 열교환기의 공기측 전열 성능에 대한 실험적 연구)

  • Cho, Jin-Pyo;Oh, Wang-Kyu;Kim, Nae-Hyun;Youn, Baek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1681-1691
    • /
    • 2002
  • The heat transfer and pressure drop characteristics of heat exchangers with louver fins were experimentally investigated. The samples had small fin pitches (1.0 mm to 1.4 mm), and experiments were conducted up to a very low frontal air velocity (as low as 0.3 m/s). At a certain Reynolds number (critical Reynolds number), the flattening of the heat transfer coefficient curve was observed. The critical Reynolds number was insensitive to the louver angle, and decreased as the louver pitch to fin pitch ratio (L$_{p}$F$_{p}$) decreased. Existing correlations on the critical Reynolds number did not adequately predict the data. It is suggested that, for proper assessment of the heat transfer behavior, the louver pattern in addition to the flow characterization need to be considered. The heat transfer coefficient increased as the fin pitch decreased. At low Reynolds numbers, however, the trend was reversed. Possible explanation is provided considering the louver pattern between neighboring fins. Different from the heat transfer coefficient, the friction factor did not show the flattening characteristic. The reason may be attributed to the form drag by louvers, which offsets the decreased skin friction at a low Reynolds number. The friction factor increased as the fin pitch decreased and the louver angle increased. A new correlation predicted 92% of the heat transfer coefficient and 90% of the friction factor within $\pm$10%.10%.