• Title/Summary/Keyword: Small-sized Groove

Search Result 6, Processing Time 0.025 seconds

Effects of Geometry and Imperfection of a Small-sized Groove on Stress Distributions in the Vicinity of the Joined Region of an ABS Part with a Thin Wall (기저부에 생성된 작은 홈 형상과 결함이 박벽이 포함된 ABS 재료로 제작된 제품의 결합 영역 응력 분포에 미치는 영향)

  • Ahn, Dong-Gyu;Hassan, Humayun;Baek, Sun Ho;Kim, Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.81-88
    • /
    • 2020
  • The geometry and the defect of the groove of the part provoke a sudden change of stress in a local region. The objective of this paper is to investigate the effects of the geometry and the imperfection of a small groove on stress distributions in the vicinity of the joined region for the ABS part with a thin wall using a three-dimensional finite element analysis (FEA). Several types of groove are designed to improve joining characteristics in the vicinity joined region. The imperfection model of the small-sized groove is obtained from observation of deposition characteristics of a fused deposition modeling process. Local stress distributions in the vicinity of the joined region are predicted by the FE model with refined meshes. The influence of the angle and the imperfection of the groove on appearance regions of the maximum stress and distributions of the defined principal stress for different loading conditions is examined using the results of FEAs. Finally, a proper design of the groove is proposed to improve joining characteristics between the substrate and the ABS part.

First Record of Six Marine Ciliate Species of Genus Strombidium (Ciliophora: Spirotricha: Oligotrichia) from Korea with Ecological Notes

  • Lee, Eun-Sun;Xu, Dapeng;Shin, Mann-Kyoon;Kim, Young-Ok
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.3
    • /
    • pp.192-207
    • /
    • 2012
  • To supply the morphological and ecological information of oligotrich ciliates in Korea, water samples were seasonally collected in Gwangyang Bay and Jinhae Bay from August, 2010 to February, 2012 and processed by quantitative protargol staining method. As a result, six species belonging to the genus Strombidium Clapar$\grave{e}$de and Lachmann, 1859 are identified: Strombidium emergens Kahl, 1932; S. dalum Lynn et al., 1988; S. epidemum Lynn et al., 1988; S. tressum Lynn et al., 1988; S. bilobum Lynn and Gilron, 1993; S. pollostomum Lynn and Gilron, 1993. These six species were newly reported from Korean coastal waters. Strombidium emergens is a middle sized Strombidium ($20-50{\mu}m$ in length) and has open and deep oral groove to girdle portion. Strombidium dalum is a small sized Strombidium (${\geq}20{\mu}m$ in length), that has torch-like spiral anterior membranelles and an inverted triangles-shaped macronucleus on the posterior pole. The small sized S. epidemum has conspicuous trichites surrounding the girdle portion and ventral membranelles distinctly separated from anterior membranelles. The small sized S. tressum has torch-like spiral and extremely long trichites among the cilia of anterior membranelles. The middle sized S. bilobum has a bilobed macronucleus. Strombidium pollostomum is also a small sized Strombidium but its ventral membranelles are continuously connected with anterior membranelles. The five species except S. emergens occurred frequently over the wide range of water temperatures and salinities.

Analysis of Crosshead-pin Bearing with Various Oil Groove Shape for Marine Engine (박용엔진용 크로스헤드 핀 베어링의 급유 형사에 따른 윤활특성 해석)

  • 하양협;이득우;김창희;김정훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.578-583
    • /
    • 1997
  • Abstract-Crosshead bearing in two-stroke marine diesel engine is operated under quite severe condition since the load on the bearing is sybject to the loading in a unidirectional and the sliding speed is very slow and oscillatory. So it is very difficult to form oil film and maintain the load. In this paper, two types of bearing are compared. One has large sized oil pocket and the seleted as multi-small oil grooves. Bearing clearance, oil inlet oressure and bearing types are selected as analysis parameters. Loci of journal center are presented to compare several cases. It is found that bearing clearance and shape affect to minimum film thickness.

  • PDF

The Bone Formation Potency on the Titanium Cap According to the Pore on the Rabbit Calvarium (가토의 두개골에서 Pore의 유무에 따른 티타늄 반구에서의 골형성 능)

  • Park, Jung-Pyo;Oh, Chul-Jung;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Ryu, Sun-Youl;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • Purpose: This study is performed to determine the effects of titanium cap with various sizes of pores on bone formation during guided bone regeneration (GBR). Methods: Calvaria from 10 adult male rabbits were chosen as the recipient sites. A trephine bur with a diameter of 10 mm was used to form one round groove on each side of sagittal suture of the cranium, and a round bur with a diameter of 1.5 mm was used to form 6 small holes on the inner circles of round grooves to induce bleeding. In the control group, bone graft was not conducted, and closed titanium cap was fixed in the round groove. Bone graft was not performed in groups 1 and 2, but fixed on titanium caps with 0.2 mm, and 0.5 mm sized pores, respectively. For groups 3, 4, and 5, a synthetic bone graft material (${\beta}$-tricalcium phosphate, Cerasorb$^{(R)}$, Germany) was transplanted, and titanium caps without pore, with 0.2 mm and 0.5 mm sized pore were fixed, respectively. The animals were sacrificed 4 weeks after, and clinical, radiographical, and histomorphometrical evaluation of bone regeneration was performed. Results: In all groups, there were no clinical signs of infection, inflammation or wound dehiscence. Radiographic evaluation revealed well-defined semi-circular radiopacity inside the titanium cap of groups 3, 4, and 5. Histologically, the inner surface of the hemisphere was evenly lined with newly formed bone tissue, as well as grafted bone material in the group 3. In groups 4 and 5, the insertion of connective tissue was observed along the inner surface. However, the overall surface area between the grafts with different holes yielded no statistical significance in the histomorphometrical evaluation. Conclusion: Although the total area of newly formed bone showed no significant difference, excellent bone formation tendency was observed histologically when closed caps were used with bone graft was accompanied.

Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems (자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발)

  • Hwang, Jisu;Ryu, Keun;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.