• Title/Summary/Keyword: Small-scale sewage treatment facility

Search Result 6, Processing Time 0.025 seconds

A study on the management status of public small-scale sewage treatment facilities and the improvement (마을하수도 운영실태 및 개선방안)

  • Shin, Dae-Yewn;Bae, Chul-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.55-64
    • /
    • 2008
  • In this study, the management and improvement of public small-scale sewage treatment facilities was investigated. In order to improve the effective management of the operation of small-scale sewage treatment facilities, treatment methods and the problems associated with sewage treatment were carefully addressed based on the data and literature. The investigation results showed that sewer pipes in rural areas should be repaired to prevent sewage from leaking and small-scale operations should be required to have effective management for pollutant loads less than 50%. Also, new methods should be developed for low concentrations of sewage. A law associated with FRP treatment facilities should be established and local governments need to supervise these operations to avoid insufficient and faulty construction. It is recommended that new facilities are built with advanced treatment techniques when the old facility can not comply with nitrogen and phosphorous discharge limits. Moreover, the study shows that nutrient and coliform treatment efficiency improves when abandoned facilities are renovated with the installation of nitrification/denitrification and disinfection processes or another advanced process.

A Study on the Characteristics of Small-scale Sewage Treatment Plants in Mountain Area and Operation Plan for Winter Season (산악지역 소규모하수처리시설의 특성 및 동절기 운영방안에 관한 연구)

  • Chae, Heejun;Lee, Jiwon;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.183-188
    • /
    • 2021
  • In the case of small-scale sewage treatment plants, it is reported that the amount of inflow fluctuates and it is difficult to operate the sewage treatment due to the inflow of unknown water due to the aging of sewage pipes. In particular, there are many overall operational problems due to the decrease in water temperature in winter. In this study, the operation status of small-scale sewage treatment facilities located in mountainous areas and water quality changes according to temperature were analyzed. It was found that the concentration of BOD, COD, and SS in effluent water was greatly changed depending on the temperature, and it was found that COD was particularly affected. Accordingly, the water level of the bioreactor was raised by 0.4m in order to temporarily apply measures to lower the water temperature in winter. As a result of comparing and analyzing the results when the bioreactor was covered and operated, a significant improvement effect occurred. In addition, a plan to improve the treatment efficiency of the bioreactor in winter is to extend the residence time of the bioreactor, a plan to expand the bioreactor specification, a new flow control tank and transport it to the outside, and an oxygen-free air diffuser to be used as an aerobic tank in case of an emergency in winter. The improvement plan was suggested. The results of this study are expected to be used as basic data for the operation plan of small-scale sewage treatment facilities in winter.

Comparing the Inflow Rate of Sewage Treatment Plants Invested by the Public Funds or Public-Private Partnership (PPP) Projects (재정사업과 민간투자사업의 하수처리장 하수유입률 특성분석)

  • Lee, Wonseok;Cho, Eunju;Son, Younggyu;Khim, Jeehyeong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.778-784
    • /
    • 2009
  • The purpose of this study is to figure out the differences of the inflow rates of Sewage Treatment Plants (STP), invested by public fund or public-private partnership (PPP). This paper finds that the average ratio of sewage inflow according to facility capacities (medium and small scale STP) was either nearly below 30% or above 100% in the first year. As the size of STP increased, there was decrease in the accuracy of demand assumption. This was because the operation time when the ratio of sewage inflow was uniform was different according to the size of STP, whereby the time was short when the STP were small. The design average ratio of sewage inflow was 10% larger than the real average ratio; this was considered overdesigned. In the case of a plant built by the PPP scheme, the average ratio of inflow of the STP before an abolition of MRG was larger than after the abolition of MRG. This may be explained by moral hazard from too much reliance on MRG. After the abolition of MRG, the demand risk of PPP was shifted from a PPP project to a conventional project.

Automatic T-P Coagulation Control System using an EC in the MSBR Process - Full Scale Study - (MSBR 공정에서 전기전도도를 이용한 인 제거 자동제어시스템 - 현장 적용 중심 -)

  • Jang, Hee-seon;Lee, Ho-sik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.1
    • /
    • pp.90-96
    • /
    • 2017
  • Many sewage treatment plants have applied the advanced technology of chemical coagulant system to remove phosporus in Korea. However there are some problems for the injection of optimum coagulant dosage. In order to solve these problems, the research related to the more cost-effective automatic total phosphorus coagulation control system using an EC(Electrical Conductivity) have been in progress. This study was conducted by the same process and operation method as the Lab-scale for public small town sewage treatment plant. First, it confirmed the correlation among the EC, PO4-P and coagulant dosage in the Lab-scale MSBR(Membrane Sequencing Batch Reactor) process. Next, it analyzed that correlation coefficient of EC and the coagulant dosage was 0.92 in the Full-scale MSBR process. As a result, not only T-P removal efficiency was doubled but also it satisfied the effluent water quality standard in a stable manner. In addition, by applying the automatic control system using the EC, compared to the fixed coagulant injection system the coagulant dosage could be reduced by 28%.

A Study on Removal of Organics, Nitrogen and Phoschorus of Domestic Wastewater in Pilot-Scale Upflow Packed Bed Column Reactor (Pilot 규모의 상향류식 충전탑 반응기를 이용한 생활오수의 유기물 및 질소, 인 처리에 관한 연구)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.191-196
    • /
    • 2007
  • This study used biofilm process, which needs simple operation, maintenance and smaller facility area than conventional activated sludge process with the small plant operation, in the treatment of increasing sewage with the rapid industrial growth. The reactor used in this study consists of one anaerobic and one aerobic chamber filled with waste ceramic and waste vinyl as media and the treated sewage was from restaurant source. The experiment was scaled up from lab. to pilot scale and lasted for about 100 days. We focused on the removal efficiency of organics, nitrogen and phosphorus with constant HRT and continuous aeration. The removal efficiency of $BOD_5$ and SS were 94.33% and 87.77% respectively, which was a satisfaction level. However the removal efficiency of $COD_{Cr}$ was 81.46% somewhat below the desired level of 90%, and that of T-N and T-P showed 71.92% and 21.10% respectively, that was below the expected value. The removal efficiency of $COD_{Cr}$ and T-N in the pilot scale was about 10% low compared with the lab.-scale.

A Study on Process Optimization for CSOs Application of Horizontal Flow Filtration Technology (수평흐름식 여과기술의 CSOs 적용을 위한 공정 최적화 연구)

  • Kim, Jae-Hak;Yang, Jeong-Ha;Lee, Young-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.56-63
    • /
    • 2018
  • The management of Combined Sewer Overflows(CSOs) and Separated Sewer Overflows(SSOs) discharge directly to the effluent system in an untreated state, which occurs when the facility capacity is exceeded due to heavy rain, has become an important issue in recent years as the heavy rain becomes a regular phenomenon. Despite the continuous development of filtration technology, targeting densely populated urban areas, CSOs are rarely applied. Therefore, this study was carried out to optimize the process to apply CSOs in a pilot-scale horizontal flow filtration system with a rope-type synthetic fiber. The research was carried out in two steps: a preliminary study using artificial samples and a field study using sewage. In the preliminary study using an artificial sample, head loss of the filter media itself was analyzed to be approximately 1.1cm, and the head loss was increased by approximately 0.1cm as the linear velocity was increased by 10m/hr. In addition, the SS removal efficiency was stable at 81.4%, the filtration duration was maintained for more than 6 hours, and the average recovery rate of 98% was obtained by air backwashing only. In the on-site evaluation using sewage, the filtration duration was approximately 2 hours and the average removal efficiency of 83.9% was obtained when belt screen (over 450 mesh) was applied as a pre-treatment process to prevent the premature clogging of filter media. To apply the filtration process to CSOs and SSOs, it was concluded that the combination with the pre-treatment process was important to reinforce the hydraulic dimension for the stable maintain of operation period, rather than efficiency. Compared to the dry season, the quality of incoming sewage was lower in the rainy season, which was attributed to the characteristics of the drainage area with higher sanitary sewerage. In addition, the difference in removal efficiency according to the influent quality of the wet season and dry season was small.