• 제목/요약/키워드: Small-Geometry Effect

검색결과 110건 처리시간 0.024초

벌크 FinFET의 기술 동향 및 이슈 (Trend and issues of the bulk FinFET)

  • 이종호;최규봉
    • 진공이야기
    • /
    • 제3권1호
    • /
    • pp.16-21
    • /
    • 2016
  • FinFETs are able to be scaled down to 22 nm and beyond while suppressing effectively short channel effect, and have superior performance compared to 2-dimensional (2-D) MOSFETs. Bulk FinFETs are built on bulk Si wafers which have less defect density and lower cost than SOI(Silicon-On-Insulator) wafers. In contrast to SOI FinFETs, bulk FinFETs have no floating body effect and better heat transfer rate to the substrate while keeping nearly the same scalability. The bulk FinFET has been developed at 14 nm technology node, and applied in mass production of AP and CPU since 2015. In the development of the bulk FinFETs at 10 nm and beyond, self-heating effects (SHE) is becoming important. Accurate control of device geometry and threshold voltage between devices is also important. The random telegraph noise (RTN) would be problematic in scaled FinFET which has narrow fin width and small fin height.

얇은 산화막의 wear out에 관한 광 조사 효과 (The effect of irradiation on the wear out of thin oxide film)

  • 김재호;최복길;성영권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.114-118
    • /
    • 1989
  • Due to the increased integration density of VLSI circuits a highly reliable thin oxide film is required to fabricate a small geometry MOS device. The behavior of thermal $SiO_2$ under high electric field and current condition has a major effect on MOS device degration and also the practical use of MOS device under irradiation has cause the degration of thin oxide films. In this paper, in order to evaluate the reliability of thin oxides with no stress applied and stressed by the irradiation under low electric field, the tests of TDDB (Time-dependent-dielectric breakdown) are used. Failure times against electric field are examined and acceleration factor is obtained for each case. Based on the experimental data, breakdown wear out limitation for thin oxide films is characterised.

  • PDF

금속관 내부의 음압유량 향상을 위한 기하학적 디자인 및 SLIPS 윤활 (Geometrical Design and SLIPS Lubrication for Enhancement of Negative-pressure-driven Internal Flow Rate in Metal Pipes)

  • 김동근;장창환;김성재;김대겸;김산하
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.253-260
    • /
    • 2021
  • Metal pipes are used in a wide range of applications, from plumbing systems of large construction sites to small devices such as medical tools. When a liquid is enforced to flow through a metal pipe, a higher flow rate is beneficial for higher efficiency. Using high pressures can enhance the flow rate yet can be harmful for medical applications. Thus, we consider an optimal geometrical design to increase the flow rate in medical devices. In this study, we focus on cannulas, which are widely used small metal pipes for surgical procedures, such as liposuction. We characterize the internal flow rate driven by a negative pressure and explore its dependence on the key design parameters. We quantitatively analyze the suction characteristics for each design variable by conducting computational fluid dynamics simulations. In addition, we build a suction performance measurement system which enables the translational motion of cannulas with pre-programmed velocity for experimental validation. The inner diameter, section geometry, and hole configuration are the design factors to be evaluated. The effect of the inner diameter dominates over that of section geometry and hole configuration. In addition, the circular tube shape provides the maximum flow rate among the elliptical geometries. Once the flow rate exceeds a critical value, the rate becomes independent of the number and width of the suction holes. Finally, we introduce a slippery liquid-infused nanoporous surface (SLIPS) coating using nanoparticles and hydrophobic lubricants that effectively improves the flow rate and antifouling property of cannulas without altering the geometrical design parameter.

공구날 특이길이의 물리적 적합성 고찰 (Physically Compatible Characteristic Length of Cutting Edge Geometry)

  • 안일혁;김익현;황지홍
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

하이브리드 로켓 산화제 난류 유동의 LES 해석 (LES for Turbulent Flow in Hybrid Rocket Fuel Garin)

  • 이창진;나양
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.233-237
    • /
    • 2007
  • 최근의 실험 결과에 의하면 하이브리드 로켓 연료의 표면에 연소가 진행되지 않은 채 남아있는 점들이 존재함을 확인하였다. 이러한 불규칙적인 spot은 연료의 기화로 인한 분출유동(blowing effect)과 산화제의 유동 사이에서 발생하는 교란에 의한 현상인 것으로 여겨진다. 본 연구에서는 LES를 이용하여 분출이 있을 때 channel 유동을 해석함으로써 연료 표면으로 전달되는 열전달 특성을 해석하였다. 비록 원형 그레인이 아니며 화학반응을 무시하고 열전달을 계사하였으나 근본적으로 연료 표면에서 발생하는 불규칙한 spot의 발생은 작은 크기의 난류 eddy의 존재 때문인 것으로 판단된다.

  • PDF

시멘트풀의 영향을 고려한 축소모형 매입말뚝의 거동분석 (The Analysis of Skin Friction on Small-scale Prebored and Precast Piles Considering Cement Milk Influence)

  • 박종전;정경자;정상섬
    • 한국지반공학회논문집
    • /
    • 제33권1호
    • /
    • pp.5-15
    • /
    • 2017
  • 주면마찰력은 매입말뚝에서 가장 큰 영향 요소이다. 특히 시멘트풀과 지반 사이의 인터페이스 거동에 있어 가장 큰 영향을 미친다. 본 연구에서는 시멘트 풀 영향을 고려하여 단독말뚝에 대한 현장축소모형말뚝 재하시험을 수행하였다. 시험말뚝은 상사비를 고려하여 길이 1.3m 지름 0.067m로 선정하였으며, 굴착공경은 150, 125, 90, 86, 74mm, 시멘트풀 물/시멘트비는 90, 70, 60%로 급속재하시험을 수행하였다. 분석 결과 굴착공경이 증가할수록 지지력 증가를 확인하였다. 또한, 물/시멘트비가 부배합일수록 지지력이 증가하는 것을 확인하였다. 상사비를 고려한 축소모형시험결과, 굴착 공경은 말뚝지름(0.508mm 기준)보다 대략 0.1~0.4D(50~200mm) 크게 시공하는 것이 적합하다. 그리고 시멘트풀 물/시멘트비는 본 연구 결과와 품질관리 등을 고려하였을 때, 70% 정도가 적절하다.

자동차 타이어의 Air-Pumping소음 예측을 위한 수치적 기법 (Numerical Method for Prediction of Air-pumping Noise by Car Tyre)

  • 김성태;정원태;정철웅;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.788-798
    • /
    • 2005
  • The monopole theory has long been used to model air-pumped effect from the elastic cavities in car tire. This approach models the change of an air as a Piston moving backward and forward on a spring and equates local air movements exactly with the volume changes of the system. Thus, the monopole theory has a restricted domain of applicability due to the usual assumption of a small amplitude acoustic wave equation and acoustic monopole theory This paper describes an approach to predict the air-pumping noise of a car tyre with CFD/Kirchhoff integral method. The tyre groove is simply modeled as piston-cavity-sliding door geometry and with the aid of CFD technique flow properties in the groove of rolling car tyre are acquired.'rhese unsteady flow data are used as a air-pumping source in the next CFD calculation of full tyre-road geometry. Acoustic far field is predicted from Kirchhoff integral method by using unsteady flow data in space and time which is provided by the CFD calculation of full tyre-road domain. This approach can cover the non-linearity of acoustic monopole theory with the aid of Non-linear governing equation in CFD calculation. The method proposed in this paper is applied to the prediction of air-pumping noise of simply modeled car tyre and through the predicted results, the influence of nonlinear effect on air-pumping noise propagation is investigated.

SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향 (Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process)

  • 류호정;김하나;이동호;진경태;박영철;조성호
    • 한국수소및신에너지학회논문집
    • /
    • 제24권6호
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

기어 제원 및 기어 가공정밀도가 기어 전달오차에 미치는 영향에 대한 연구 (A Study on the Effect of Macro-geometry and Gear Quality on Gear Transmission Error)

  • 이주연;문상곤;문석표;김수철
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.36-42
    • /
    • 2021
  • This study was conducted to analyze the effect of the gear specification and gear quality corresponding to the macro geometry on the gear transmission error. The two pairs of gears with large and small transmission errors were selected for calculation, and two pairs of gears were manufactured with different gear quality. The test gears were manufactured by two different gear specifications with ISO 5 and 8 gear quality, respectively. The transmission error measurement system consists of an input motor, reducer, encoders, gearbox, torque meter, and powder brake. To confirm the repeatability of the test results, repeatability was confirmed by performing three repetitions under all conditions, and the average value was used to compare the transmission error results. The transmission errors of the gears were analyzed and compared with the test results. When the gear quality was high, the transmission error was generally low depending on the load, and the load at which the decreasing transmission error phenomenon was completed was also lower. Even when the design transmission error according to the gear specification was different, the difference of the minimum transmission error was not large. The transmission error at the load larger than the minimum transmission error load increased to a slope similar to the slope of the analysis result.

선수부 주위의 자곡표면류의 유동관측에 관한 실험적 고찰 (A Experimental Study on the Observation of Free-Surface Flow around Ship's Bow)

  • 박명규;김동률
    • 한국항해학회지
    • /
    • 제17권1호
    • /
    • pp.37-48
    • /
    • 1993
  • When the vessel is running at the very low Froude numbers, the free-surface is difficult to be disturbed, wave-making is negligible, and the double -model velocity potential gives a very good approximation for calculating the velocity distribution just outside the boundary layer. If the speed of incident flow is gradually increased, the most perceptible change is the rise of the flow surface at stem. With further increase in speed, the nature of the flow at the bow changes completely, The flow ahead of the bow becomes more distrubed, the rise at the stem to stagnation height disappear, and the first wave crest, of less than the stagnation height, appears a small distance downstream from the stem. The present study is concerned with a small region of this flow, mainly in the bow region. The present investigation is primarily an experimental study of the flow in the bow region of s ship model, and it is undertaken in order to investigated systematically, the effect of bow geometry on this flow. The long-range objective is to use these results to guide the development of a mathematical model for predicting the flow about a ship's bow.

  • PDF