• 제목/요약/키워드: Small-Disturbance

검색결과 330건 처리시간 0.037초

신경회로망 외란 관측기를 이용한 불확실한 로봇 시스템의 운동 제어 (Motion Control of an Uncertain robotic Manipulator System via Neural Network Disturbance Observer)

  • 김은태;김한정
    • 전자공학회논문지SC
    • /
    • 제39권4호
    • /
    • pp.6-15
    • /
    • 2002
  • 본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.

신경망을 이용한 비선형 시스템의 외란 관측기 설계 (Design of Disturbance Observer of Nonlinear System Using Neural Network)

  • 신창섭;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 D
    • /
    • pp.2046-2048
    • /
    • 2003
  • In this paper, a neural disturbance observer(NDO) is developed and its application to the control of a nonlinear system with the internal and/or external disturbances is presented. To construct the NDO, a parameter tuning method is proposed and shown to be useful in adjusting the parameters of the NDO. The tuning method employes the disturbance observation error to guarantee that the NDO monitors unknown disturbances. Each of the nodes of the hidden layer in the NDO network is a radial basis function(RBF). In addition, the relationships between the suggested NDO-based control and the conventional adaptive controls reported in the previous literatures are discussed. And it is shown in a rigorous manner that the disturbance observation error converges to a region of which size can be kept arbitrarily small. Finally, an example and some computer simulation results are presented to illustrate the effectiveness and the applicability of the NDO.

  • PDF

외란과 모델 불확실성에 강인한 DC모터의 속도 제어용 H-infinity 제어기 설계 (H-infinity controller design for robust speed control against disturbance and model uncertainty of DC motors)

  • 정태영;김동근
    • 수산해양기술연구
    • /
    • 제58권3호
    • /
    • pp.241-250
    • /
    • 2022
  • This paper describes the design of H-infinity controller for robust control of a DC motor system. The suggested controller can ensure robustness against disturbance and model uncertainty by minimizing H-infinity norm of the transfer function from exogenous input to performance output and applying the small gain theorem. In particular, the controller was designed to reduce the effects of disturbance and model uncertainty simultaneously by formalizing these problems as a mixed sensitivity problem. The validity of the proposed controller was demonstrated by computer simulations and real experiments. Moreover, the effectiveness of the proposed controller was confirmed by comparing its performance with PI controller, which was tested under the same experimental condition as the H-infinity controller.

Design of Active Disturbance Rejection Control for Inductive Power Transfer Systems

  • Wang, Yanan;Dong, Lei;Liao, Xiaozhong;Ju, Xinglong;Xiao, Furong
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1434-1447
    • /
    • 2018
  • The control design of inductive power transfer (IPT) systems has attracted a lot of attention in the field of wireless power transmission. Due to the high-order resonant networks and multiple loads in IPT systems, a simplified model of an IPT system is preferred for analysis and control design, and a controller with strong robustness is required. Hence, an active disturbance rejection control (ADRC) for IPT systems is proposed in this paper. To realize the employment of ADRC, firstly a small-signal model of an LC series-compensative IPT system is derived based on generalized state-space averaging (GSSA), then the ADRC is implemented in the designed IPT system. The ADRC not only provides superior robustness to unknown internal and external disturbances, but also requires few knowledge of the IPT system. Due to the convenient realization of ADRC, the designed IPT system retains its simple structure without any additional circuits. Finally, a frequency domain analysis and experimental results have validated the effectiveness of the employed ADRC, especially its robustness in the presence of frequency drifts and other common disturbances.

Simulation of viscous and inviscid rayleigh-taylor instability with surface tension by using MPS

  • Kim, Kyung Sung;Kim, Moo Hyun
    • Ocean Systems Engineering
    • /
    • 제8권2호
    • /
    • pp.167-182
    • /
    • 2018
  • RTI (Rayleigh-Taylor instability) is investigated by a multi-liquid MPS (Moving Particle Semi-implicit) method for both viscous and inviscid flows for various density differences, initial-disturbance amplitudes, viscosities, and surface tensions. The MPS simulation can be continued up to the late stage of high nonlinearity with complicated patterns and its initial developments agree well with the linear theoretical results. According to the relevant linear theory, the difference between inviscid and viscous fluids is the rising velocity at which upward-mushroom-like RTI flow with vortex formation is generated. However, with the developed MPS program, significant differences in both growing patters and developing speeds are observed. Also, more dispersion can be observed in the inviscid case. With larger Atwood (AT) number, stronger RTI flows are developed earlier, as expected, with higher potential-energy differences. With larger initial disturbances, quite different patterns of RTI-development are observed compared to the small-initial-disturbance case. If AT number is small, the surface tension tends to delay and suppress the RTI development when it is sufficiently large. Interestingly, at high AT number, the RTI-suppressions by increased surface tension become less effective.

An Autonomous Blimp for the Wall Following Control

  • Oh, Seung-Yong;Roh, Chi-Won;Kang, Sung-Chul;Kim, Eun-Tai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1668-1672
    • /
    • 2005
  • This paper presents the wall following control of a small indoor airship (blimp). The purpose of the wall following control is that a blimp maintains its position and pose and flies along the wall. A blimp has great inertia and it is affected by temperature, atmospheric pressure, disturbance and air flow around blimp. In order to fly indoors, a volume of blimp should be small. The volume of a blimp becomes small then the buoyancy of a blimp should be smaller. Therefore, it is difficult to attach additional equipments on the blimp which are necessary to control blimp. For these reasons, it is difficult to control the pose and position of the blimp during the wall following. In our research, to cope with its defects, we developed new blimp. Generally, a blimp is controlled by using rudders and elevators, however our developed blimp has no rudders and elevators, and it has faster responses than general blimps. Our developed blimp is designed to smoothly follow the wall by using low-cost small ultra sonic sensors instead of high-cost sensors. Finally, the controller is designed to robustly control the pose and position of the blimp which could control in spite of arbitrary disturbance during the wall following, and the effectiveness of the controller is verified by experiment.

  • PDF

듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 안정화 제어 (Dual Stage Servo Controller for Image Tracking System)

  • 최영준;강민식;유건환;이승현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.45-46
    • /
    • 2006
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve transient control performances such as small rise time, small overshoot, small settling time, etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving transient responses and attenuating the disturbance related with dynamic coupling.

  • PDF

선회유동 교란에 따른 벤투리 유량측정의 불확실성 해석 (Effect of Swirl Flow Disturbance on Uncertainty of Flow Rate Measurement by Venturi)

  • 이정호;윤석호;유청환;박상진;정장환
    • 한국유체기계학회 논문집
    • /
    • 제12권6호
    • /
    • pp.18-25
    • /
    • 2009
  • Venturi has long been an attractive method of measuring flow rate in a variety of engineering applications since pressure loss is relatively small compared with other measuring methods. The current study focuses on making detailed uncertainty estimations as the upstream flow disturbance affects uncertainty levels of the flow rate measurement. Upstream flow disturbance can be determined by 9 different swirl generators. Measurement uncertainty of flow rate has been estimated by a quantitative uncertainty analysis which is based on the ANSI/ASME PTC 19.1-2005 standard. The results of flow rate uncertainty analysis show that the case with systematic error has higher than that without systematic error. Especially the result with systematic error exhibits that the uncertainty of flow rate was gradually increased by swirl flow disturbance. The uncertainty of flow rate measurement can be mainly affected by differential pressure and discharge coefficient. Flow disturbance can be also reduced by increasing of the upstream straight length of Venturi.

익형 주위의 압축성 습공기 유동에 대한 수치 해석적 연구 (A computational study on compressible flow of humid air around airfoil)

  • 이장창
    • 한국항공우주학회지
    • /
    • 제31권4호
    • /
    • pp.1-7
    • /
    • 2003
  • 습공기에 포함된 수증기가 상(Phase)변화를 일으킬 때 잠열이 발생하고 이 잠열은 익형 주위의 압축성 유동 상태량들을 변화시키므로, 이러한 열 증가가 유동에 끼치는 영향에 대하여 수치해석을 통하여 연구 수행하였다. 수치해석은 Rusak 과 Lee [1]가 최근에 연구 수행한 미교란 방법(small-disturbance approach)에 근거하여 이루어졌다. 고전적 핵 생성 모델과 작은 물방울 성장(droplet growth)모델을 이용한 이 방법에서는 비평형 균질 응축과정에서 일어나는 열 방출을 묘사한다. 응축에 의한 열전달, 압축성 유동의 운동에너지, 그리고 유동의 열적 상태량들 사이에서 일어나는 비선형 상호영향을 조사하고, 또한 주어진 문제를 지배가호 있는 상사 파라미터들을 제시하였다. 계산 결과들은 Euler 방정식을 사용하여 얻은 선행 수치계산들과 비교하여 잘 일치됨을 보였다. 상사법칙은 유동 동역학과 응축 상태량들이 상당히 비슷하게 거동하는 다양한 유동 형태들을 제안한다. 압축성 습공기 유동은 유체기계에 사용되는 익형들의 공력 성능을 증가시키는데 응용될 수 있다.

Transonic Flutter Suppression of the 2-D Flap Wing with External Store using CFD-based Aeroservoelasticity

  • Lee, Seung-Jun;Lee, In;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.121-127
    • /
    • 2006
  • An analysis procedure for the combined problem of control algorithm and aeroelastic system which is based on the computational fluid dynamics(CFD) technique has been developed. The aerodynamic forces in the transonic region are calculated from the transonic small disturbance(TSD) theory. An linear quadratic regulator(LQR) controller is designed to suppress the transonic flutter. The optimal control gain is estimated by solving the discrete-time Riccati equation. The system identification technique rebuilds the CFD-based aeroelstic system in order to form an adequate system matrix which involved in the discrete-time Riccati equation. Finally the controller, that is constructed on the basis of system identification technique, is used to suppress the flutter phenomenon of the airfoil with attached store. This approach, that is, the CFD-based aeroservoelasticity design, can be utilized for the development of effective flutter controller design in the transonic region.