Generally a navigator evaluated the maneuverability of his ship by the scale of turning circle which was described only by the largest rudder angle of the port and starboard sides. But to have the sufficient knowledge of his ship's maneuvering characteristics he should consider the data about the new course keeping test, the spiral test, and the turning circle tests in accordance with the rudder angles together. In this paper the author performed the above tests to study the maneuverability of the stern trawler M.S. Pusan 404 which is a training ship of the National Fisheries University of Pusan. The obtained results are summarized as follows: 1. When the rudder angles being 5。, 10。, 20。, 30。, 35。 the advances of the starboard side turning circles were 12.8, 8.2, 4.8, 2.9, 2.7 times as large as the length of the ship, and of the port side turning circles were 13.3, 8.7, 5.4, 3.5, 2.9, time as large as the large as it. Under the same conditions the tactical diameters were 15.1, 9.7, 5.2, 3.1, 2.8 times as large as the length of the ship, for starboard side, and 17.2, 12.4, 6.4, 3.7, 3.2 times as large as it for port side. 2. As the rudder angle being increased the ratio of the advance to the tactical diameter was nearly 1 and her obeying ability was better than that of the small angle. 3. The mean values of the rates of speed reduction during the steady turning motion were 0.96, 0.92, 0.82, 0.71, 0.65 in accordance with the rudder angles. 4. The relative formulas between the distance to the new course y and the altering course x were as follows: When rudder angles being 10。, 20。, 30。, y=52.2222+1.6133x, y=48.750+0.9383x, y=39.250+0.655x respectively. 5. There was little difference of the distance to the new course between rudder angle 20。and 30。, and so it is desirable for a navigator to a navigator to use the small rudder angles unless sudden emergencies. 6. Though her rudder angle being small her course stability was good according to the spiral tests.