• Title/Summary/Keyword: Small scale river

Search Result 119, Processing Time 0.047 seconds

Investigations into a Multipurpose Dam in Tasman District-New Zealand

  • Thomas, Joseph Theodore
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.40-48
    • /
    • 2008
  • The Waimea Basin is located on the northern tip of the South Island of New Zealand. It is a highly productive area with intense water use with multi-stakeholder interest in water. Irrigation from the underground aquifers here makes up the largest portion of used water; however the same aquifers are also the key urban and industrial sources of water. The Waimea/Wairoa Rivers are the main sources of recharge to the underlying aquifers and also feed the costal springs that highly valued by the community and iwi. Due to the location of the main rivers and springs close to the urban centre the water resource system here has high community and aesthetic values. Recent enhanced hydrological modelling work has shown the water resources in this area to be over allocated by 22% for a 1:10 year drought security for maintaining a minimalistic flow of 250 l/s in the lower Waimea River. The current irrigated land area is about 3700 hectares with an additional potential for irrigation of 1500 hectares. Further pressures are also coming on-line with significant population growth in the region. Recent droughts have resulted in significant water use cutbacks and the threat of seawater intrusion in the coastal margins. The Waimea Water Augmentation Committee (WWAC) initiated a three year stage 1 feasibility study in 2004/2005 into the viability of water storage in the upper parts of the catchment for enhancing water availability and its security of supply for consumptive, environmental, community and aesthetic benefits downstream. The project also sought to future proof water supply needs for the Waimea Plains and the surrounding areas for a 50 - 100 year planning horizon. The broad range stage 1 investigation programme has identified the Upper Lee Catchment as being suitable for a storage structure to provide the needs identified and also a possibility for some small scale hydro electricity generation as well. The stage 2 detailed feasibility investigations that are underway now (2007/2008), and to be completed in two years is to provide all details for progressing with the next stage of obtaining necessary permits for construction and commissioning a suitable dam.

  • PDF

Nitrogen and Phosphorus Runoff Loss during Summer Season in Sandy Loam Red Pepper Field as Affected by Different Surface Management Practices in Korea

  • Han, Kyung-Hwa;Ro, Hee-Myong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.669-676
    • /
    • 2016
  • A field study was conducted to determine the runoff loss of N and P in small scale of red pepper field plots (10% slope), consisting of three different plots with black polyethylene vinyl mulching (mulching), ridge without mulching (ridge), and flat without ridge and mulching (flat). Composted manure and urea as a basal application were applied at rates of $20MT\;ha^{-1}$ and $93kg\;N\;ha^{-1}$, respectively. Urea at $189kg\;N\;ha^{-1}$ and fused phosphate at $67kg\;P_2O_5\;ha^{-1}$ were additionally applied on June 25 with different fertilization methods, broadcast application in flat plot and hole injection in ridge and mulching plots. Plant uptake of N and P was positively correlated with their respective concentrations in surface soil: mulching > ridge > flat plots. The runoff loss by soil erosion was higher in flat plot than ridge and mulching plot with contour line. Nitrate loss by the runoff water had no significant differences among three surface management practices, but the higher average value in ridge and mulching plots than flat plot. Especially, the flat plot had no phosphate loss during summer season. This is probably due to low labile P content in surface soil of flat plot. In the summation of soil and water loss, flat plot was higher in N and P loss than ridge and mulching plot with contour line. Nevertheless, the nitrate and phosphate loss by runoff water could be more important for non-point source management because the water could meet the river easier than eroded soil because of re-deposition around slope land.

Basic study for construction methods of salino water protection for Estuary barrier. (하구언의 담수침투방지공법에 관한 연구)

  • 최영박;임병조
    • Water for future
    • /
    • v.9 no.1
    • /
    • pp.55-69
    • /
    • 1976
  • The purpose of this paper is to provide basic data for construction methods of leakage pretaction for estuary barrien which is constructed to in take restoration water from irigative use and a river flow in its ultimate dsicharge to ward to sea, The water, accordingly, has reviewed the discrepancis between theories and experiments based on the hydraulic analysis of ground water through a series of sourveys on equi-patential line of seepage flow and a series of some experiments. apparently, however, the research results herein might reflect in some part not more than inference since those experiments are not conducted in a real foundation but from an indoor experiment or calculation, conclusion in brief are itemized here-under. 1. small-scale barrier require cut-off wall, which should reach the complete impereable layer, 2. Duplication barrier is provided effective in protection saline water seepage. 3. a barrier with broad crest might enable protection of massive seepage by fresh water lens formed from precipitation.

  • PDF

Development of Semi-Distributed TOPMODEL (준분포형 TOPMODEL 개발)

  • Bae, Deg-Hyo;Kim, Jin-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.10 s.159
    • /
    • pp.895-906
    • /
    • 2005
  • The diversity of observed hydrologic data and the development of geographic information system leads significant progress for developing distributed runoff models in the world. One of the typical examples is TOPMODEL, but the spatial coverage of its application Is limited on small headwater basins. The purpose of this study attempts to overcome its limitation and consequently develops a semi-distributed TOPMODEL. The developed model is composed of two components: a watershed runoff component for a lumped representation of hydrologic runoff process on the catchment scale and a kinematic wave type hydraulic channel routing component lot routing the catchment outflows. The application basin is the $2,703km^2$ upper Soyang dam site and several daily and hourly events are selected for model calibrations and verifications. The model parameters are estimated on 1990 daily event. The model performance on correlation coefficient between observed and computed flows are above 0.90 for the verification events. It is concluded that the developed model in this study can be used for flood analysis in large drainage basins.

Biotope Networking in a Metropolitan Area of Daegu -The Case of Susung gu-

  • Ra, Jung-Hwa;Park, In-Hwan;Sagong, Jung-Hee
    • Journal of the Korean Institute of Landscape Architecture International Edition
    • /
    • no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The biotope network of Susung gu is characterized as dense residence zones forming its core that enable partial biotope in and around the residential zones. First, in district I, it is possible to make these zones connected to the third district. In district II, which is abundant in biotope, it is very important not to continue destoyi9ng the existing biotopes. In the case of district III, old residence zones have fill the severe gap between forests and the Sinchun river, through redevelopment, which covers more than 30% of the biotope area with large scaled linear residence areas. In the case of district IV, limited destruction of biotope and the improvement of nature areas were suggested as the alternative for preservation of biotopes. Consequently, in the construction of the biotope network in Su-sung gu, the maintenance of existing biotopes is required. Int he old residence zones, as redevelopment occurs, by maintaining biotope area of more than 30% and making the scale of residential complexes more than 1ha, it is possible for old residence zones to accomplish the role of providing important green spaces. In the case of newly developed residential zones, by reducing the rate of pavement of traffic conducts, utilizing small sized parks at the junctions and the plantation of trees along the corridors, the entire residence zones are able to accomplish the role of providing important green space. The problem houses and connecting the inner green space of the private houses with the green spaces of the streets in some areas. Futhermore, green spaces of forests must not be used for urban development. Dual planting on sidewalks, planting plots dispersed among streets and median strips must be established on road, too.

  • PDF

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

mprovement of Estimation Method of Load Capture Ratio for Design and Evaluation of Bio-retention LID Facility (생태저류지 LID 시설의 설계 및 평가를 위한 삭감대상부하비 산정방법 개선)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Yongseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2018
  • To minimize the negative alterations in hydrologic and water quality environment in urban areas due to urbanization, Low Impact Development (LID) techniques are actively applied. In Korea, LID facilities are classified as Non-point Pollution Reduction Facilities (NPRFs), and therefore they are evaluated using the performance evaluation method for NPRFs. However, while LID facilities are generally installed in small, distributed configuration and mainly work with the infiltration process, the existing NPRFs are installed on a large scale and mainly work with the reservoir process. Therefore, some limitations are expected in assessing both facilities using the same method as they differ in properties. To solve these problems, in this study, a new method for performance evaluation was proposed with focus on bio-retention LID facilities. EPA SWMM was used to reproduce the hydrologic and water quality phenomena in study area, and SWMM-LID module used to simulate TP interception performance by installing a bio-retention cell under various conditions through long-term simulations. Finally, an empirical formula for Load Capture Ratio (LCR) was derived based on storm water interception ratio in the same form as the existing method. Using the existing formula in estimating the LCR is likely to overestimate the performance of interception for non-point pollutants in the extremely low design capacity, and also underestimate it in the moderate and high design capacity.

The Geomorphological Features of Dongcheon-gugok in Korea (우리나라 동천구곡의 지형경관)

  • KEE, Keun-Doh
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • This work is to describe the geomorphological landscapes of of Dongcheon-gugok in Korea, and attempts to develop a basic data for traditional natural heritage. Dongcheon-gugok is a union of natural lanscape and human mind-activity. Therefore the study of natural landscape, which consists of geomorphological landscapes, provides a basic data for the use and conservation of traditional natural heritage. Dongcheon-gugok in Korea is almost distributed in the valley of mountainous areas of Taeback and Soback Mountain Ranges. The bedrocks of the areas of Dongcheon-gugok are almost granitic rocks and sedimentary rocks. The landscapes of Dongcheon-gugok is characterized by narrow meandering valley, so Gugok means nine-bended river. The elements of the geomorphological features is a broad flat rock with sheeting joints, joint-block seperated large blocks or tor, steep slope and rocky cliffs, pool, ripple, large or small scale waterfall, pot-hole, etc.

Development of a CCTV-Based Multi-Site Automated Discharge Measurement Technology Linked Small-Mid-, and Large-Scale River Basin (국가-지방-소하천 연계 CCTV기반 다지점 자동유량 계측 기술개발)

  • Yoon, Sun Kwon;Choi, Hyeonseok;Cheong, Taesung;Kim, Seojun;Im, Yunseong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.15-15
    • /
    • 2021
  • 최근 기후변화에 따른 서울의 강수 특성이 변화하고 있으며, 장마철 국지성 집중호우에 의한 하천 내 고립사고 발생 등 그 피해가 가속화될 전망이다. 하천의 안전사고 예방을 위해서는 상류에서 빠르게 유입되는 유량의 계측을 통한 홍수 예·경보가 무엇보다 중요하며, 실시간 계측된 유속과 유량 정보는 하류 지역의 홍수 도달시간 확보로 한 발 빠른 대응을 가능하게 한다. 본 연구에서는 우이천 시범유역을 대상으로 총 6개 지점에 대하여 CCTV기반 자동유량계측 기술을 시범적용하였으며, 사용된 자동유량계측 지점은 기존 환경부의 월계2교, 중랑교 지점과 더불어 추가로 중랑천 월계1교지점, 우이천 본류(창번2교)와 소하천구간(인수천: 지성교, 백운천: 청담교) 지점이다. 우이천과 중랑천 합류 후에는 하도구간에 대하여 중랑교 지점에 설치된 환경부의 계측 정보를 활용하여 홍수파의 도달시간을 검증하였다. 분석결과, 유량계측 오차는 0.9~8.9%로 분석되었으며, 유속계측 오차 또한 현장 계측 결과와 10%이내의 오차범위를 보임으로서 안정된 수리량 계측이 가능함을 검증하였다. 또한, SWMM 모델링 결과와 결합하여 Flow Nomograpgh 작성을 실시하였으며, 상하류 연계 홍수 예·경보 가능성을 진단하였다. 이는 실시간 계측된 자료와 모형을 통한 시뮬레이션 정보를 활용한 유역 단위의 신뢰성 있는 유출응답(강우-유량-수위 관계) 규명을 가능하게 하였다. 향후 지방하천과 소하천의 경우, 국가하천 수준에 부합하는 표준화된 수리량 계측 체계를 마련할 필요성이 있으며, 소유역 규모의 수량-수질 수자원 기초조사자료 생산은 지방하천설계 및 관련 이·치수계획 수립에도 도움이 될 것으로 사료된다.

  • PDF

Verification of Stream Flow by Rainfall-Runoff Simulation and Hydrologic Analysis in Daecheong Basin (수문 특성 분석에 의한 대청유역 주요지점 유출모의 검증)

  • Lee, Sang-Jin;Kim, Joo-Cheol;Noh, Joon-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • In this study long term rainfall-runoff model, developed based on SSARR, was applied to Geum river basin and its simulation results of major control points were compared with the corresponding observed channel discharges. The validities of the simulation results were examined with re-measured discharges of those control points. From the above procedure the points showing the unreliable results were found out and its principal causes are analyzed through hydrological inspection of runoff characteristics of their circumstances. Finally the simulation results were modified by the consideration of the effects by small-scale hydraulic structures which could directly affect the channel discharges. As a result the annual runoff simulations of two major points in Geum river basin, Yongdam and Daecheong dam sites, work well. However the low flow simulation of the point located between them, Sutong station, showed more or less the unreliable result. Its causes are considered by means of the hydraulic/hydrological inspection of the corresponding point.