• Title/Summary/Keyword: Small rotor

Search Result 398, Processing Time 0.028 seconds

Rotor Blade Sweep Effect on the Performance of a Small Axial Supersonic Impulse Turbine

  • Jeong, Sooin;Choi, Byoungik;Kim, Kuisoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.571-580
    • /
    • 2015
  • In this paper, a computational study was conducted in order to investigate the rotor blade sweep effect on the aerodynamics of a small axial supersonic impulse turbine stage. For this purpose, three-dimensional unsteady RANS simulations have been performed with three different rotor blade sweep angles ($-15^{\circ}$, $0^{\circ}$, $+15^{\circ}$) and the results were compared with each other. Both NTG (No tip gap) and WTG (With tip gap) models were applied to examine the effect on tip leakage flow. As a result of the simulation, the positive sweep model ($+15^{\circ}$) showed better performance in relative flow angle, Mach number distribution, entropy rise, and tip leakage mass flow rate compared with no sweep model. With the blade static pressure distribution result, the positive sweep model showed that hub and tip loading was increased and midspan loading was reduced compared with no sweep model while the negative sweep model ($-15^{\circ}$) showed the opposite result. The positive sweep model also showed a good aerodynamic performance around the hub region compared with other models. Overall, the positive sweep angle enhanced the turbine efficiency.

Experimental Study on the Performance of Screw Compressor with Various Shapes of Air End (에어엔드 형상변화에 따른 스크류 압축기 성능에 관한 실험적 연구)

  • Kim, Tae-Yoon;Lee, Jae-Young;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • The performance of screw air compressor is affected by rotor profile, lobe number, air end wrap angle, rotor L/D ratio, suction and discharge ports, revolutions of air end and load regulation control, etc. In general, an efficient screw compressor needs a rotor profile of which has a large flow cross-section area, short sealing lines and a small blow-hole. In this study, experimental study was performed with newly designed $5{\times}6$ rotor profile and various shapes of air end. Results show that the measured specific power consumption of the newly designed screw compressor appeared to be lower than any other published data for the equivalent screw compressors manufactured.

A Study of Fatigue Load for Rotor Blades of the Utility Helicopter (다목적 헬리콥터 로터 블레이드 피로하중에 대한 연구)

  • Oh, Man-Seok;Kim, Hyun-Duk;Park, Jung-Sun;Gi, Yeong-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.648-653
    • /
    • 2007
  • In this study, we have generated fatigue load spectrum that is using to prediction of life time for the helicopter rotor blades. We derive utility helicopter missions for the sake of generating load spectrum. Helix and Felix are standard loading sequences which relate to the main rotors of helicopters with articulated and semi-rigid rotors respectively. We got scale factors which is applied to specific case and it did be obtained through the finite element analysis tools. The fatigue life of the rotor blade is estimated by using MSC/Fatigue. We suggest that generated our fatigue load spectrum in conjunction with small utility helicopter should use to rotor blade fatigue test of the korea helicopter program.

  • PDF

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Pattern Recognition of Rotor Fault Signal Using Bidden Markov Model (은닉 마르코프 모형을 이용한 회전체 결함신호의 패턴 인식)

  • Lee, Jong-Min;Kim, Seung-Jong;Hwang, Yo-Ha;Song, Chang-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1864-1872
    • /
    • 2003
  • Hidden Markov Model(HMM) has been widely used in speech recognition, however, its use in machine condition monitoring has been very limited despite its good potential. In this paper, HMM is used to recognize rotor fault pattern. First, we set up rotor kit under unbalance and oil whirl conditions. Time signals of two failure conditions were sampled and translated to auto power spectrums. Using filter bank, feature vectors were calculated from these auto power spectrums. Next, continuous HMM and discrete HMM were trained with scaled forward/backward variables and diagonal covariance matrix. Finally, each HMM was applied to all sampled data to prove fault recognition ability. It was found that HMM has good recognition ability despite of small number of training data set in rotor fault pattern recognition.

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor System (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Doeg-Kwan;Kim, Seung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.187-192
    • /
    • 2012
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5 m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000 lb class helicopter. Flexbeam and torque tube can be considered as key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

Finite Element Analysis of a Inner-Rotor Type BLDC Motor without Rotor Core (회전자 철심이 없는 내전형 BLDC 모터의 유한요소 해석)

  • Chang, Hong-Soon;Jung, In-Soung;Baek, Soo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.10
    • /
    • pp.652-658
    • /
    • 2000
  • In many cases, ferrite magnets of ferrite bonded magnets used in inner-rotor type small brushless DC(BLDC) motors do not have rotor core. The magnetization directions of permanent magnets do not have only parallel or radial direction. In this case, the characteristics of magnets are different from cored type ones which have uniform magnetization direction. In this paper, the magnetization directions and intensities of a ferrite magnet and a ferrite bonded magnet are analyzed by finite element analysis for magnetization procedure. The characteristics of inner-rotor type BLDC motor are analyzed by using the analyzed results. The validity of the method is verified by comparing the analyzed results with measured ones.

  • PDF

Aerial Application using a Small RF Controlled Helicopter (V) - Tail Rotor System - (소형 무인헬기를 이용한 항공방제기술(V) -테일 로터부의 구성-)

  • Koo, Y.M.;Seok, T.S.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2007
  • In this study, a tail rotor system for an agricultural RF controlled helicopter was developed and tested. This study concluded the mechanical development of the 'Agro-heli' by completing the tail rotor system and its radio console. The RF control system was closely related with the tail system for the control of flying attitude. The thrust of the tail system balance off the reaction torque, created by the main rotor. Lifting tests with and without the tail system were compared for estimating the consumption of power. The tail system would use $4{\sim}5%$ of the total power which was in an acceptable range. Flying performance and attitude was visually inspected. It showed reliable and safe control during the distance flying trials and could be adapted for utilization in aerial applications. Aerial application using an RF controlled agricultural helicopter may make precise and timely spraying possible.

A Study on the Voltage Drop of Induction Generator along the Rotor Shape (회전자 형상에 따른 유도발전기 전압강하에 대한 연구)

  • Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.62-66
    • /
    • 2015
  • Induction generator is easy to durability and maintenance than the synchronous generator. So, recently Induction generator has been widely applied to small-scale hydroelectric power plant. When the rotor is operating faster than synchronous speed, induction machine can generate electric power. Induction generator has a large inrush currents, such as the starting current of the induction motor. Induction motor has been designed a variety of rotor shape in order to reduce starting current. Since the occurrence of high inrush current cause a voltage drop to the system, it will need to reduce possible. Because the starting current of the squirrel-cage induction motor varies in accordance with the rotor shape, it is necessary to analyze the magnitude of inrush current in order to apply to the generator. In this study, we analyzed the inrush current and the voltage drop caused in accordance with the rotor shape of 1500kw induction generator.