• Title/Summary/Keyword: Small reservoir

Search Result 342, Processing Time 0.035 seconds

Drought Estimation Model Using a Evaporation Pan with 50 mm Depth (50mm 깊이 증발(蒸發) 팬을 이용한 한발 평가 모델 설정)

  • Oh, Yong Taeg;Oh, Dong Shig;Song, Kwan Cheol;Um, Ki Cheol;Shin, Jae Sung;Im, Jung Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.92-106
    • /
    • 1996
  • Imaginary grass field was assumed suitable as the representative one for simplified estimation of local drought, and a moisture balance booking model computing drought was developed with the limited numbers of its determining factors, such as crop coefficient of the field, reservoir capacity of the soil, and the beginning point of drought as defined by soil moisture status. The maximum effective rainfall was assumed to be the same as the available free space of soil reservoir capacity. The model is similar to a definite depth evaporation pan, which stores rainfall as much as the available free space on the water in it and consumes the water by evaporation. When the pan keeps water less than a certain defined level, it is droughty. The model simulates soil moisture deficit on the assumed grass field for the drought estimation. The model can assess the water requirement, drought intensity, and the index of yield decrement due to drought. The influencing intensity indices of the selected factors were 100, 21, and 16 respectively for crop coefficient, reservoir capacity, and drought beginning point, determined by the annual water requirements as influenced by them in the model. The optimum values of the selected factors for the model were respectively 58% for crop coefficient defined on the energy indicator scale of the small copper pan evaporation, 50 mm for reservoir capacity on the basis of the average of experimentally determined values for sandy loam, loam, clay loam, and clay soils, and 65% of the reservoir capacity for the beginning point of drought.

  • PDF

The Application of the GWLF model for Rural Small Watershed (농촌 소유역에 대한 GWLF 모형의 적용성 검토)

  • Hwang, Sye-Woon;Jang, Tae-Il;Park, Seung-Woo;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.23-34
    • /
    • 2006
  • This study reviews the applicability of the GWLF (Generalized Watershed Loading Function) model, which is based on a loading function that requires only a relatively small amount of data, in a small agricultural watershed. The hydrological data was collected from 1996 to 2004 for a study area based on the HP#6 upper stream reservoir small watershed area. This data was then used to calibrate and verify the model. A simulation based on the model yielded $R^2$ values of $0.47\sim0.89$. This is considered to have high applicability when compared to the simulation and the observed results, which yielded relatively high values of $R^2$ for SS (Suspended Solid), TN (Total Nitrogen), and TP (Total Phosphorus) of 0.58, 0.47 and 0.62, respectively. This study provides a useful approach fur researchers selecting appropriate models to use the insufficient measuring data for rural watersheds.

Safety evaluation of agricultural reservoir embankment according to backside extension (후면 덧쌓기에 따른 농업용 저수지 제체의 안정성 평가)

  • Lee, Dal-Won;Noh, Jae-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.97-110
    • /
    • 2012
  • This study was carried out for safety evaluation, the practical application and improvement of design method of the agricultural reservoir embankment according to backside extension. Seepage analysis, slope stability analysis and finite element analysis were performed for steady state and transient conditions. Also, the pore water pressure, seepage quantity, safety factor and stress-strain behavior according to high water level and rapid drawdown were compared and analyzed. The pore water pressure at contact region between backside extension and old embankment was kept high after rapid drawdown. Therefore, backside extension is recommended that design method is required to be improved and reinforced more than the others raising embankment. The hydraulic gradients before and after backside extension showed high value at the base of the core, but they showed stable state at the upstream slope and downstream slope. The seepage quantity per 1 day and the leakage per 100 m for the steady state and transient conditions appeared to be safe against the piping. The safety factor of slope stability showed high at the steady state, and transient conditions did not show differences depending on the rapid drawdown. The safety factor was appeared high at the upstream slope before backside extension and downstream slope after extension. The excess pore water pressure for steady state and transient conditions showed negative(-) at the upstream slope, it was small at the downstream slope. The mean effective stress (p') showed high at the base of the core and to be wild distribution after the extension. The displacement after extension showed 0.02-0.06 m in the upstream slope, the maximum shear strain after extension was smaller than that before extension.

The Effectiveness of Overflow Improvement of Broad-Crested Side Weirs according to Installing a Hydraulic Structure (보 설치에 따른 광정횡월류위어의 월류량 개선 효과)

  • Kang, Ho Seon;Cho, Hong Je
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.7
    • /
    • pp.523-533
    • /
    • 2015
  • In this study, the effectiveness of overflow improvement of weir was tested by conducting hydraulic experiments at the designated spot for installment of side weir under the condition of installment of hydraulic structures such as small reservoir in mainstream. The height of the reservoir was set up as a third of that of the weir, accordingly the rate of the height of the weir and the distance of the reservoir from the weir($B_h/L_b$) were 0.05, 0.025, 0.0167 each. As a result, overflows per unit width increased by 8.1%, 5.4% and 3.9% perspectively. A new discharge coefficient that adds $B_h/L_b$ as parameter to the existing discharge coefficient of trapezoidal broad crested side weir was suggested and the application of the new formula of discharge coefficient by comparing measured overflow with calculated overflow was identified.

A Study on the Selection of Non-point Pollution Management Regions with High Priority Order in the Yeongsan River Basin (영산강수계 비점오염원 중점관리지역 선정에 관한 연구)

  • Lee, JaeChoon;Park, HyeLin;Lim, ByungJin;Lee, ChangHee;Lee, SuWoong;Lee, YongWoon
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.347-355
    • /
    • 2012
  • In this study, non-point pollution sources in the Yeongsan river basin are analyzed; then, the priority regions (areas divided on a small scale) of management are selected for efficient water management of the Seungcheon and Jooksan reservoirs, which were constructed as one of the 4 major rivers restoration projects. The priority regions are decided by using the criteria of the excessive rate of target water quality, non-point pollution load per unit area, total TP load and down flow distance. The results of this study are as follows. The upper 10% of the priority regions for non-point pollution management includes YB15, YB05, YB10, YB24, YB14 and YB11 for the Seungcheon reservoir watershed, and YC24, YC25, YC30, YC34, YC22 and YC17 for the Jooksan reservoir watershed. However, a few regions in each of the Seungcheon and Jooksan reservoirs need to be selected in higher order, and the non-point pollution removal facilities in the regions need to be installed with respect to budget, urgent matter, and so on.

Assessment of Environmental Flow Impacts for the Gosam Reservoir According to Climate Change (기후변화에 따른 고삼저수지의 환경유량 영향평가)

  • Yoon, Tae Hyung;Kang, Ho Young;Kim, Jong Suk;Moon, Young Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.6
    • /
    • pp.93-100
    • /
    • 2016
  • This study conducted a quantitative assessment on the environmental flows associated with climate change in the Gosam Reservoir, Korea. The application of RCP 8.5 climate change scenario has found that the peak value of High Flow Pulses has increased by 36.0 % on average compared to historical data (2001 ~ 2010), which is likely to cause disadvantage on flood control and management but the increase in peak value is expected to make a positive impact on resolving the issue of green algal blooms, promoting vegetation in surrounding areas and encouraging spawning and providing habitats for native species by releasing a larger amount of landslides as well as organic matters than the past. However, the decreasing pattern of the peak value of High Flow Pulses is quite apparent with the trend of delay on the occurrence time of peak value, necessitating a long-term impact analysis. The peak value of Large Floods shows a clear sign of decrease against climate change scenario, which is expected to lead to changes in fish species caused by degraded quality of water and decreasing habitats. A quicker occurrence of Small Floods is also expected to make an impact on the growth cycle of aquatic plants, and the reduction in occurrence frequency of Extreme Low Flows is to contribute to increasing the population of and raising the survival rate of native fish, greatly improving the aquatic ecosystem. The results of this study are expected to be useful to establish the water environment and ecological system in adapting or responding to climate change.

Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention (재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구)

  • Yang, Young Jin;Lee, Tae Ho;Oh, Sue Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

Sediment Release Rate of Nutrients from Namyang Reservoir (남양호 퇴적물에서 영양염류 용출 특성 분석)

  • Cho, Young-Cheol;Chung, Se-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1345-1352
    • /
    • 2007
  • To predict the effects of nutrient releasing on the water quality of Namyang Reservoir, nutrient releasing rates from sediments in oxic and anoxic conditions were estimated in a small microcosm. Organics and nitrogens were not released. The releasing pattern of inorganic phosphate and total phosphorus was depend on the oxygen concentration. The releasing rate of inorganic phosphate and total phosphorus in oxic condition was $1.01\sim2.48$ and $2.14\sim3.54$ mg-P/$m^2$/day, respectively. It was high in the upstream sediments indicating the particles containing easily degradable organic compounds are flowed into the area. Because the depth of Namyang Reservoir at the downstream adjacent to the Dam is $7\sim14$ m, the condition of most area of sediment surface will be oxic. Based on these results, the appropriate counterplans are required to reduce phosphorus release in oxic conditions to control water pollution.

The Relationships Between Empirical Factors and Water Quality in Agricultural Reservoirs (농업용 저수지 수질과 경험적 인자들과의 관계)

  • Kim, Ho-Sub;Choi, Eun-Mi;Park, Ju-hyun;Hwang, Ha-Sun;Kim, Bomchul;Kong, Dong-Soo;Hwang, Soon-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.333-339
    • /
    • 2008
  • This study was carried out to assay the relationships between empirical factors and water quality in 23 agricultural reservoirs. Based on the trophic state index (TSI) deviation analysis, phosphorus in type II and III was the primary limiting factor on algal growth. BOD, COD, TP and chl.a concentration in type III reservoirs showed higher concentration than those of other types, while SS and TN concentration was no noticeable difference among three types. Characteristics of type III reservoirs showed large reservoir surface and drainage area, large surface area to volume (SAV) ratio, small drainage area to reservoir area (DA/RA) ratio, relatively old age, large paddy field and upland field to drainage area ratio (Mean 17.4%) and high generation and discharge loads compared to other types of reservoirs. In type I and II reservoirs, trends of BOD, TN, TP concentration in water column, were similar to those of the discharge load of pollutants. Although type II reservoirs generally showed low phosphorus discharge loads compared to type I reservoirs, TP and chl.a concentration in water column was greater than that of type I. Characteristics of type II reservoirs showed relatively large SAV ratio and old age compared to type I reservoirs and was similar to those of type III including eutrophic reservoirs.