• Title/Summary/Keyword: Small refrigeration system

Search Result 145, Processing Time 0.032 seconds

Performance Characteristics of Propane/isobutane Mixtures in a Small Refrigeration System (프로판-이소부탄 혼합냉매를 적용한 소형 냉동시스템의 성능 특성에 관한 연구)

  • 윤원재;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.1
    • /
    • pp.73-82
    • /
    • 2002
  • A small refrigeration system used in a water purifier was tested by employing propane/isobutane (R-290/R-6OOa) mixtures as an alternative refrigerant of R-12. The drop-in tests were performed by varying mass fraction of propane at 0.25, 0.5 and 0.75 with a change of both refrigerant charge amount and capillary tube length in order to find an optimum composition in aspect of performance and reliability of the system. As a result, the mixture of 50% propane-50% isobutane showed the best performance and reliability among them in a small refrigeration system. During steady state operations, both the COP and refrigeration capacity increased by 4% and 9%, respectively, as compared to the baseline R-12 system. In addition, the propane/isobutane (50/50) mixture system yielded advantages in the minimization of modification and redesigning of system components due to very similar saturation tempera- ture and pressure characteristics with R-12.

A Study on Performance Characteristics of Propane/Isobutane Refrigerant Mixtures in a Domestic Small Multi-Refrigeration System (프로판/이소부탄(R-290/R-600a) 혼합 냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Kim Sanguk;Lee MooYeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.2 s.233
    • /
    • pp.271-278
    • /
    • 2005
  • In this paper, the performance of Kim-chi refrigerator with three evaporator and one compressor was investigated in employing $55\%$ propane and $45\%$ isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop-in test was performed by varying both refrigerant charge and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. Results show that the power consumption is decreased by about $15\%$ and COP is increased by about $10\%$, respectively as compared to the baseline system using R-134a. In addition, the propane/isobutane refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because thermodynamic properties such as saturation pressure, temperature, normal boiling point(NBP) characteristics are similar to those of R134a. The reduction of sales cost is caused by the decrease of refrigerant cost per unit mass and refrigerant charge amount necessary for the refrigeration system.

Performance Evaluations of a Residential Small Multi-Refrigeration System Considering the Adiabatic Characteristics (단열 특성을 고려한 가정용 소형 멀티 냉동시스템의 성능에 관한 연구)

  • Lee, Moo-Yeon;Lee, Dong-Yeon;Joo, Young-Ju;Kim, Sang-Uk;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.10
    • /
    • pp.868-875
    • /
    • 2007
  • In this paper, performance characteristics of a domestic kim-chi refrigerator are predicted by using the theoretical calculation and experimental method. The objective of this study is to find out the best design points of the refrigeration system and to calculate an adiabatic characteristic with variation to outdoor temperatures. The best design points such as refrigerant charge amount and capillary length were experimentally investigated. And the theoretical calculation is conducted as a function of calculation parameters and outdoor temperatures. According to this study results, the best design points of a refrigeration system with 2 rooms are 95 g of a refrigerant charge amount and 3500 / 3500 mm of capillary lengths and the best design points of a refrigeration system with 3 rooms are 100 g of a refrigerant charge amount and 3000/3000/6000mm of capillary lengths. And the power consumptions of both systems are 13.57 and 18.2 kWh/month. The worst part of heat loss is a front side of a domestic kim-chi refrigerator body.

Performance Analysis of Refrigeration System Using the CFC-Alternative and Scroll Compressor (CFC-대체냉매와 스크롤압축기를 사용한 냉동시스템 성능해석)

  • Pak, H.Y.;Park, K.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.366-381
    • /
    • 1995
  • A performance analysis of refrigeration system using the HFC-134a and scroll compressor is performed numerically. The refrigeration system mainly consists of various standard components such as heat exchanger, compressor, and expansion device. The model for heat exchanger performance is based on a tube-by-tube method which is analyzed separately by considering the cross-flow heat transfer with the outdoor air flow and pressure drop. Compressor is used the scroll-type compressor which has many merits such as high efficiency, low noise and vibration, and small in size. Short-tube is included as an expansion device. Vapour and liquid line are also considered for the performance analysis of refrigeration system. Using the modeling of various components of refrigeration system, a performance comparison of CFC-12 and HFC-134a is performed numerically for the various outdoor air temperature and various values of short-tube diameter. As the results of this study, the refrigeration system performance decreases as the outdoor air temperature increases. And the optimum short-tube diameter based on COP is 1.37mm for this system.

  • PDF

Evaluation on the Cyclic and Adiabatic Performance of a Small Multi-Refrigeration system (김치냉장고를 중심으로한 소형 멀티 냉동시스템의 성능특성 변화에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok;Lee, Won-Keum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.769-774
    • /
    • 2003
  • In this paper, the performance of a domestic Kim-Chi refrigerator is predicted by using a calculation model & experiment. The objectives of this study are to find out the best design points of a refrigeration system and calculate an adiabatic characteristic to change outdoor temperature. The best design points such as refrigerant charge and capillary length were experimentally investigated. And the calculation model is conducted as a function of calculation parameters and outdoor temperature. According to this study results, the best design points of a refrigeration system are each 95g of a refrigerant charge and 3500/3500mm of capillary lengths. And the power consumption is 13.578 Kwh/month. And a part of the worst heat loss is a front side of a domestic Kim-Chi refrigerator body.

  • PDF

Evaluation of the Performance Characteristics of Propane/isobutene Refrigerant Mixtures in a Small multi-refrigeration System (프로판/이소부탄 혼합냉매를 적용한 가정용 소형 멀티 냉동시스템의 성능특성에 관한 연구)

  • Lee, Moo-Yeon;Choi, Seok-Jae;Kim, Sang-Ok
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1945-1950
    • /
    • 2004
  • In this paper, The performance of Kim-Chi refrigerator with three evaporator and one compressor was investigated in employing 55% propane and 45% isobutane (R290/R600a) refrigerant mixture as an alternative refrigerant of R134a. The drop in test was performed by varying both refrigerant charge amount and capillary tube length in order to find both the performance and reliability of a small multi-refrigeration system. As a result, Both the power consumption and COP is increased by about 15% and 10%, respectively as compared to the baseline R134a system. In addition, the propane/isobutene refrigerant mixture system took advantage of the minimization of modification and redesigning of system components because of similar thermodynamic properties with R134a such as saturation pressure, temperature, normal boiling point(NBP) characteristics

  • PDF

Evaluation of Liquid Pressure Amplifier Technology

  • Reindl Douglas T.;Hong Hiki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 2005
  • Liquid pressure amplifiers have been proposed as an energy saving technology for vapor compression refrigeration systems configured with direct-expansion evaporators. The technology utilizes a refrigerant pump in the high pressure liquid line as a means of maintaining a suitable pressure differential across the expansion valve while lowering condensing pressure to achieve the reduction of compressor energy consumption. Applications have been proposed on systems ranging from small unitary air-conditioning to large supermarket and commercial refrigeration systems. This paper clarifies the role of such a device in a vapor compression refrigeration system. Limitations are presented and discussed. Finally, results of detailed analyses are presented to quantify the energy consumption both with and without a liquid pressure amplifier in a unitary air conditioning system. The estimated energy savings associated with the installation of a liquid pressure amplifier are minimal.

An Experimental Study on the Effects of the Cooling Jacket Design Parameters on the Performance of Thermoelectric Cooling System (열전소자 냉각 자켓의 설계인자가 열전냉각 시스템의 성능에 미치는 효과에 대한 실험적 연구)

  • Lee, J.E.;Park, S.H.;Kim, K.;Kim, D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2079-2084
    • /
    • 2007
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached on the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket included the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The introduction of geometrical complexity of the cooling water flow passage to the cooling jacket also showed significant improvement on the performance of the thermoelectric refrigeration system such as the cooling capacity and the COP of the refrigeration system.

  • PDF

Study of Flooding Prevention on Cathode Gas Diffusion Layer for Dynamic Load Fuel Cell

  • Choi, Dong-Won;You, Jin-Kwang;Rokhman, Fatkhur;Bakhtiar, Agung;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.270-273
    • /
    • 2011
  • Water management is important in proton exchange membrane fuel cell because the water balance has a significant impact on the overall fuel cell system performance. In fuel cell vehicle, the vehicle's power demand is dynamic; therefore, the dynamic water management system is required. This present study proposes a method to control the humidity of the input air in cathode side of the fuel cell vehicle. The simulation using several driving cycles shows the proposed air humidification control obtains a relatively good result. The liquid saturation level is seen constant at the target level although still there are small deviations at driving cycles which having averagely high power demands.

  • PDF

R&D OF FREEZING AND REFRIGERATION SYSTEM USING CHP. (가역 화학 열 펌프(CHP)를 이용한 냉장.냉동 시스템 개발 연구)

  • 이종호;김석종
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.132-135
    • /
    • 1996
  • This study is to develop an ammonia based chemical heat pump(STELF) for a freezing and refrigeration system coupled to gas, fuel and/or waste from industrial processes as heat sources. Recently it has been continually taking a growing interest in chemical heat pumps without electric power and having higher COP's than those of existing compression type refrigeration systems using freon. By introducing STELF technology, efficient heat recovery utilizing enormous amount of waste heat in energy consuming large scale industries or building for their own refrigeration purposes is possible. Moreover, air-conditioning systems coupled to city gas for small scale industries or building can be realized. Therefore, STELF technology can contribute much for overall energy savings and efficient energy management.

  • PDF