• Title/Summary/Keyword: Small passenger Car

Search Result 53, Processing Time 0.02 seconds

Development of Combined Sheet Metal Forming and Plate Forging of a Metal Seal Part of Hub Bearing for an Automobile (자동차 허브 베어링용 씰 금속부품의 판재성형 및 판단조의 복합성형 공정 개발)

  • Park, K.G.;Moon, H.K.;Oh, S.K.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2020
  • In this paper, experimental and numerical study on a combined sheet metal forming and plate forging of a seal part of a passenger car's hub bearing is conducted to develop the new process of which target is to remove machining process by plate forging and to achieve near-net shape manufacturing. The previous process of a sheet metal forming inevitably needed a machining process for making stepped sheet after conventional sheet metal forming in a progressive way. The stepped sheet is intended to be formed by plate forging in this study. Through the systematic way of developing the combined forming process using solid elements based-elastoplastic finite element method (FEM), several conceptual designs are made and an optimized process design in terms of geometric dimensioning and tolerance of straightness of the thin part is found, which is exposed to bending in metal forming of axisymmetric part. The predicted straightness measured by the slope angle of the tilted thin region is compared with the experimental straightness, showing that they are in a good agreement with each other. Through this study, a systematic approach to optimal process design, based on elastoplastic FEM with solid elements, is established, which will contribute to innovating the conventional small-scaled sheet metal forming processes which can be dealt with by solid elements.

An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles (자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구)

  • Yohan Park;Wonpil Park;Seungki Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

Establishment of a Estimation Model of On-Road and Off-Road Parking Demand Based on the Total Floor Area of Buildings (건축물 연면적에 따른 노상·노외 주차수요 산정 모형 구축)

  • Je mo Nam;Young woo Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.2
    • /
    • pp.44-53
    • /
    • 2023
  • Recently, serious parking problems are occurring due to the difficulty of securing sufficient parking space, and it may lead to other traffic or social problems. In order to solve the parking problem in areas and districts beyond a certain range, a study on-roads and off-street parking lots reflecting regional characteristics is necessary. Therefore, this study establishing a parking demand calculation model for use as a basic study in establishing on-road and off-road characteristics. In order to conduct the study, Dong-fu, Daegu Metropolitan City was divided into dongs, and parking facilities and parking demand were investigated. The survey time was divided into daytime and nighttime on weekdays, and the types of vehicles were divided into three types: passenger car, small trucks and buses, large trucks and buses. As explanatory variables for calculating parking demand, the total floor area of buildings for each of six purposes was used, including detached houses, apartment houses, neighborhood living facilities, cultural and assembly facilities, business facilities, and sales facilities. As a result of the correlation analysis, among the six explanatory variables, the total area of neighborhood living facilities showed a significant correlation with on- and off-street parking demand. A regression analysis model was constructed using the total area of neighborhood living facilities as an explanatory variable, and statistically significant results were obtained.