• 제목/요약/키워드: Small overlap frontal crash test

검색결과 4건 처리시간 0.021초

국부정면충돌 시험방법에 관한 실험적 연구 (Experimental Study on the Small Overlap Frontal Crash Test Method)

  • 김대업;우창기
    • 한국생산제조학회지
    • /
    • 제26권2호
    • /
    • pp.205-213
    • /
    • 2017
  • In order to improve occupant protection in frontal crash, the IIHS introduced a small overlap frontal crash test in 2012. When the front corner of a car collides with another car or object, such as utility pole the test replicated the sequence of events. Because occupants move simultaneously forward and toward the side of the vehicle this test is challenging for some airbag and safety belt designs. In the small overlap frontal test, a car travels at 64 km/h toward a rigid barrier. A hybrid III dummy is positioned in the driver seat. 25% of the total width of the car strikes the barrier on the driver side. After review of small overlap frontal test protocol and overall rating, six run-throughs were performed according to the original test method.

신 정면 충돌 시험의 시뮬레이션 비교 분석 (Simulation Analysis and Comparison of New Frontal Impact Tests)

  • 정경진;윤영한;박지양;김동섭;오명진;곽영찬;손창기;신재곤;이은덕;권해붕
    • 자동차안전학회지
    • /
    • 제9권2호
    • /
    • pp.20-25
    • /
    • 2017
  • KNCAP is a program to evaluate the automobile safety, providing consumer vehicle safety assessment results. The safety evaluation tests are Frontal Impact, Offset Frontal Crash, Side Crash, Side Pole Crash, Rear Impact. This is the study of the offset frontal impact safety evaluation. Currently, IIHS is performing a small overlap test. NHTSA plans to implement the oblique moving deformable barrier test. Euro-NCAP plans to implement a mobile frontal impact test. Simulation is used to compare occupant behavior and injury. We have investigated whether the introduction of the test at KNCAP is necessary. The dummy model used in the simulation was the 50th percentile male Hybrid III dummy.

자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구 (An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles)

  • 박요한;박원필;김승기
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

${\cdot}$${\cdot}$대형 중고 승용차량에 대한 차 대 차 충돌시험을 통한 차체변형 및 인체상해 특성에 관한 연구 (A Study on Human Injury Characteristics and Vehicle Body Deformation with Car to Car Crash Test for Crash Compatability)

  • 임종훈;박인송;허승진
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.135-141
    • /
    • 2005
  • Currently many safety assessment tests are conducted by crashing a vehicle against a rigid or deformable barrier. It is quite rational to evaluate crash performance of a vehicle in a barrier test in terms of vehicle stiffness and strength. However, there has been a lot of debate on whether barrier testing is a duplicate of real world crash collisions. One of the issues is car to car compatability. There are two essential subjects in compatability. One is partner-protection when crashing into another vehicle and the other is self-protection when struck by another vehicle. When considering a car to car frontal crash between a mini car and a large heavy car, it is necessary to evaluate human body stiffness of each vehicle. In this study, in order to evaluate the compatability of cars in car-to-car crashes, four tests were conducted. Test speed of each car is 48.3km/h, and the overlap of the mini and large car is $40\%$, and the overlap of the small cars is $100\%$. In all tests, only a drive dummy is used. The test results of the car to car crash test show that vehicle safety standard of mini car is not satisfied compared with large heavy car and HIC value of mini car is higher than large car. In this case observed that the relatively lower stiffness and weight of the mini car resulted in absorbing a large share of the total input energy of the system when crashed into the large heavy car.