• Title/Summary/Keyword: Small molecule

Search Result 375, Processing Time 0.023 seconds

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

Nonstructural Protein 5B of Hepatitis C Virus

  • Lee, Jong-Ho;Nam, In Young;Myung, Heejoon
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.330-336
    • /
    • 2006
  • Since its identification in 1989, hepatitis C virus has been the subject of extensive research. The biology of the virus and the development of antiviral drugs are closely related. The RNA polymerase activity of nonstructural protein 5B was first demonstrated in 1996. NS5B is believed to localize to the perinuclear region, forming a replicase complex with other viral proteins. It has a typical polymerase structure with thumb, palm, and finger domains encircling the active site. A de novo replication initiation mechanism has been suggested. To date, many small molecule inhibitors are known including nucleoside analogues, non-nucleoside analogues, and pyrophosphate mimics. NS5B interacts with other viral proteins such as core, NS3, 4A, 4B, and 5A. The helicase activity of NS3 seems necessary for RNA strand unwinding during replication, with other nonstructural proteins performing modulatory roles. Cellular proteins interacting with NS5B include VAMP-associated proteins, heIF4AII, hPLIC1, nucleolin, PRK2, ${\alpha}$-actinin, and p68 helicase. The interactions of NS5B with these proteins might play roles in cellular trafficking, signal transduction, and RNA polymerization, as well as the regulation of replication/translation processes.

EFFECT OF ETHENE $(C_2 H_4)$ ON THE PLASMA $DeNO_X$ PROCESS FROM DIESEL ENGINE EXHAUST

  • Park, Kwang-Seo;Kim, Dong-Inn;Lee, Hyeong-Sang;Chun, Bae-Hyeock;Yoon, Woong-Sup;Chun, Kwang-Min
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.77-83
    • /
    • 2001
  • Effect of ethene on the $DeNO_X$ conversion process in a simulated diesel engine operating conditions was investigated experimentally and theoretically. With the addition of even a small amount of ethene the NO to $NO_2$ conversion enhances greatly. The energy required to convert one NO molecule is 27 eV with 250 ppm ethene added, while 137 eV without ethene at 473 K. The effect of energy density, temperature, and the initial concentrations of ethene and oxygen are also discussed and the results show that the increase of the mentioned parameters lead to the promotion of NO oxidation. A kinetic model used in this study shows good agreement with the experimental result. Byproducts like formaldehyde ($CH_2$ 0) and methyl nitrite ($CH_3$ ONO) predicted by model calculation are broken up into CO and $H_2O$ eventually when high energy is delivered to the gas mixture. Sensitivity analysis shows that the main reactions of NO oxidation when ethene is added we: $HO_2+ NO \arrow NO_2 + OH, RO_2 + NO \arrow NO_2 + RO$, where R is a hydrocarbon radical. Also the direct oxidizing reaction of NO with O cannot be neglected.

  • PDF

Electronic and Magnetic Structure Calculations of Mn-dimer Molecular Magnet (Mn-dimer 분자자성체의 전자구조 및 자기구조 계산)

  • Park, Key Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.4
    • /
    • pp.97-100
    • /
    • 2014
  • We have studied electronic and magnetic structure of Mn-dimer molecule using OpenMX method based on density functional method. The calculated density of states shows that the four O atoms split $e_g$ and $t_{2g}$ energy levels. The energy splitting by the crystal field is smaller than bulk MnO with cubic structure, because of small coordination number of atoms. Total energy with antiferromagnetic spin configuration is lower than that of ferromagnetic configurations. Calculated exchange interaction J between Mn atoms is one order larger than that of the other Mn-O magnetic molecules. That comes from the direct exchange interaction between Mn 3d orbitals and the super-exchange interactions caused by strong ${\sigma}$-bonding of Mn-O orbitals.

The Solubilization Behavior of DOPE-Immunoliposomes with Immunoglobulin G(IgG) by Added Bile Salts (Immunoglobulin G(IgG)를 함유한 DOPE 리포솜의 제조와 담즙산염에 의한 용해 특성)

  • Lee, Eun-Ok;Kim, Jin-Gu;Kim, Jong-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.135-144
    • /
    • 1990
  • The effects of bile salts (BS) on the stability of dioleoylphosphatidylethanolamine (DOPE) liposomes were investigated, observing apparent absorbance of vacant liposomes and calcein release from entrapped liposomes. Unilamellar liposomes were prepared by using a small quantity of palmitoly-immunoglobulin G(IgG) ($2.5{\times}10^{-4}$ mo1/lipid mol) to stabilize the bilayer phase of the unsaturated DOPE which by itself does not form stable liposomes. The destabilization of PE immunoliposomes by papain, clearly demonstrates that the IgG is essential for stabilization of PE bilayer. Approximately 4% of the entrapped calcein was released from the PE liposomes after 1 hr from liposome formation. Calcein release and absorbance of liposomes depended on the BS/lipid ratio because of the solubilization of lipid molecule in bilayer and the formation of mixed micelles. At very low BS concentrations, the incorporation of BS induced BS/lipid aggregates in the outer vesicles monolayer, while high BS concentrations, mixed micelles were formed. Chelate and its conjugates as $3{\alpha},\;7{\alpha},\;12{\alpha}-trihydroxy$ BS induce the concentration of the $3{\alpha}$, $12{\alpha}-dihydroxy$ BS at half-maximal solubilization of immunoliposomes to approximately 2.5-, or 5-fold. Conjugation of BS with glycine or taurine slightly enhanced their capacities to perturb membranes.

  • PDF

The Blood-Brain Barrier Permeability and Pharmacokinetics of Nitrone Based Spin Trapping Agent, $\alpha$-Phenyl-n-tert-Butyl Nitrone (PBN) in Rats (흰쥐에서 nitrone계 항산화제인 $\alpha$-phenyl-n-tert-butyl nitrone(PBN)의 뇌 투과성 및 체내동태)

  • 이나영;강영숙
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.124-128
    • /
    • 2002
  • The nitrone-based free radical trapping reagent, $\alpha$-phenyl-n-tert-butyl nitrone (PBN) has been proposed as therapeutic agent for stroke. We used this for model drug of development of new drug for neuroprotection. The purpose of this study was to evaluate the blood-brain barrier (BBB) permeability of PBN in Sprague-Dawly (SD) rats. The BBB transport of PBN was investigated in SD rats using internal carotid artery perfusion (ICAP) method at a rate of 4 mι/min for 15 second. We also obtained pharmacokinetic parameters of PBN using single intravenous injection technique. When we estimated BBB permeability of PBN with ICAP method, the brain volume of distribution of PBN was 60.0 $\pm$ 12.0 $\mu\textrm{g}$/ι. The brain uptake of PBN after IV injection at 120 min was 0.15 $\pm$ 0.01%ID/g. The PBN was transported to the brain through the BBB well in rats, because PBN is small molecule (MW 177) and lipid-soluble (log P 1.23) compound.

CP-690550 Treatment Ameliorates Established Disease and Provides Long-Term Therapeutic Effects in an SKG Arthritis Model

  • Oh, Keunhee;Seo, Myung Won;Kim, In Gyu;Hwang, Young-Il;Lee, Hee-Yoon;Lee, Dong-Sup
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.257-263
    • /
    • 2013
  • Although pathogenesis of human rheumatoid arthritis (RA) remains unclear, arthritogenic T cells and downstream signaling mediators have been shown to play critical roles. An increasing numbers of therapeutic options have been added for the effective control of RA. Nevertheless, there is still a category of patients that fails treatment and suffers from progressive disease. The recently developed immunosuppressant CP-690550, a small molecule JAK kinase inhibitor, has been implicated as an important candidate treatment modality for autoimmune arthritis. In this study, we evaluated the therapeutic effect of CP-690550 on established arthritis using an SKG arthritis model, a pathophysiologically relevant animal model for human RA. CP-690550 treatment revealed remarkable long-term suppressive effects on SKG arthritis when administered to the well-advanced disease (clinical score 3.5~4.0). The treatment effect lasted at least 3 more weeks after cessation of drug infusion, and suppression of disease was correlated with the reduced pro-inflammatory cytokines, including IL-17, IFN-${\gamma}$, and IL-6 and increased level of immunoregulatory IL-10.

Effects of Protein Contained in Major Ingredients with Treated Emulsifiers on Chemically Leavened Reduced-Calorie Cake as Baked Product Model Systems (제과제빵 모델 시스템으로서 저열량케익에 미치는 주재료 성분중 함유된 단백질 및 전처리된 유화제의 영향)

  • Kim, Hye-Young
    • Korean journal of food and cookery science
    • /
    • v.13 no.2
    • /
    • pp.185-191
    • /
    • 1997
  • The effects of five hydrated emulsifiers with or without specified proteins (flour, egg) and/or polydextrose on the reduced-calorie cake as baked product model systems were compared. The small molecule amphiphiles (SMA) used were monoglycerides (MG), sorbitan monostearate (SMS), polysorbate (PS) 60, sucrose ester (SE) F7O, and SE Fl60. All flour batters with each emulsifier and supplements had similar low foam drainages (0.00∼1.03$m\ell$) indicating those systems were fairly stable in the presence of flour protein. The cake batter using starch instead of flour without egg and polydextrose and with some emulsifiers had relatively large amount of drainages (4.20∼5.87$m\ell$). When the egg and polydextrose were added to the blank cake batters using starch, foam drainages tended to show relatively low scores (0.13∼1.48$m\ell$) indicating the cake batter dispersion system is stabilized. Starch cakes made with SE F70 without egg or polydextrose(blank) unexpectedly had high volume index of 199.

  • PDF

Reviews on the Hepatotoxicity of Tyrosine Kinase Inhibitors (티로신 키나아제 저해제의 간독성에 대한 고찰)

  • Han, Ji Min;Gwak, Hye Sun
    • Korean Journal of Clinical Pharmacy
    • /
    • v.29 no.4
    • /
    • pp.223-230
    • /
    • 2019
  • Background: Small-molecule tyrosine kinase inhibitors (TKIs) have had major impacts on anticancer therapy by targeting the catalytic activities of dysregulated tyrosine kinases. TKIs have not presented traditional toxicities; however, some serious adverse effects, including hepatotoxicity, have been documented in clinical trials and post-marketing surveillance. Although TKI-induced hepatotoxicity can cause severe clinical complications in patients, the underlying mechanism is still unclear. Methods: Studies on TKI-induced hepatotoxicity were identified by Pubmed search, and relevant articles were reviewed. Results: Immunoallergic reaction, cytochrome P (CYP) 450 polymorphisms, and formation of reactive metabolites are under consideration as mechanisms of TKI-induced hepatotoxicity. Host protein-drug metabolite conjugates are recognized as antigens by class II major histocompatibility complexes and are believed to cause liver injuries. Polymorphisms in CYP, which influences TKI metabolism, can slow TKI metabolism and may induce development of hepatotoxicity. The formation of reactive metabolites during drug metabolism can induce hepatotoxicity by directly causing cytotoxicity, leading to cell dysfunction, and indirect toxicity by mediating secondary immune reactions. Concurrent use of various medications with TKI can also cause hepatotoxicity by affecting drug transporter or enzyme activities. Conclusion: Periodic monitoring of patients taking TKIs and risk/benefit reassessments though post marketing surveillance are necessary to prevent hepatotoxicity.

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.