• 제목/요약/키워드: Small molecule

검색결과 368건 처리시간 0.03초

Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC

  • Park, Young-Choon;Lim, Ivan S.;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권3호
    • /
    • pp.803-808
    • /
    • 2012
  • We have implemented two-component spin-orbit relativistic effective core potential (SOREP) methods in an all-electron relativistic program DIRAC. This extends the capacity of the two-component SOREP method to many ground and excited state calculations in a single program. As the test cases, geometries and energies of the small halogen molecules were studied. Several two-component methods are compared by using spin-orbit and scalar relativistic effective core potentials. For the $I_2$ molecule, excitation energies of low-lying excited states agree well with those from corresponding all-electron methods. Efficiencies in SOREP calculations enhanced by using symmetries are also discussed briefly.

New Donor Materials Based on Thiazole and Triphenylamine for Photovoltaic Devices

  • Ro, Tak-Kyun;Hong, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권9호
    • /
    • pp.2897-2902
    • /
    • 2012
  • New photovoltaic donor materials, 4,4'-(2,2'-bithiazole-5,5'-diyl)bis(N,N-diphenylbenzenamine) (BDT) and 4-(2,2'-bithiazol-5-yl)-N,N-diphenylbenzenamine (BT), were synthesized. A solution processable triphenylamine-containing bithiazole (BDT and BT) was blended with a [6,6]-phenyl $C_{61}$ butyric acid methyl ester (PCBM) acceptor to study the performance of small-molecule-based bulk heterojunction (BHJ) photovoltaic devices. Optimum device performance was achieved after annealing, for device with a BDT/PCBM ratio of 1:4. The open-circuit voltage, short-circuit current, and power conversion efficiency of the device with the aforementioned BDT/PCBM ratio were 0.51 V, 4.10 $mA\;cm^{-2}$, and 0.68%, respectively, under simulated AM 1.5 solar irradiation (100 $mW\;cm^{-2}$).

Identification of Potent Leukocyte Common Antigen-Related Phosphatase Inhibitors via Structure-Based Virtual Screening

  • Park, Hwangseo;Pham, Ngoc Chien;Chun, Ha-Jung;Ryu, Seong Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2006-2010
    • /
    • 2013
  • Leukocyte common antigen-related phosphatase (LAR) has been considered a promising target for the development of therapeutics for neurological diseases. Here, we report the first example for a successful application of the structure-based virtual screening to identify the novel small-molecule LAR inhibitors. Five of these inhibitors revealed micromolar inhibitory activities with the associated $IC_{50}$ values ranging from 2 to 6 ${\mu}M$. Because the newly identified inhibitors were also screened for having desirable physicochemical properties as a drug candidate, they may serve as a starting point of the structure-activity relationship study to optimize the medical efficacy. Structural features relevant to the stabilization of the new inhibitors in the active site of LAR are discussed in detail.

Chemical Genetics Approach Reveals Importance of cAMP and MAP Kinase Signaling to Lipid and Carotenoid Biosynthesis in Microalgae

  • Choi, Yoon-E;Rhee, Jin-Kyu;Kim, Hyun-Soo;Ahn, Joon-Woo;Hwang, Hyemin;Yang, Ji-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.637-647
    • /
    • 2015
  • In this study, we attempted to understand signaling pathways behind lipid biosynthesis by employing a chemical genetics approach based on small molecule inhibitors. Specific signaling inhibitors of MAP kinase or modulators of cAMP signaling were selected to evaluate the functional roles of each of the key signaling pathways in three different microalgal species: Chlamydomonas reinhardtii, Chlorella vulgaris, and Haematococcus pluvialis. Our results clearly indicate that cAMP signaling pathways are indeed positively associated with microalgal lipid biosynthesis. In contrast, MAP kinase pathways in three microalgal species are all negatively implicated in both lipid and carotenoid biosynthesis.

Effect of surfactant adsorption on the rheology of suspensions flocculated by associating polymers

  • Otsubo, Yasufumi;Horigome, Misao
    • Korea-Australia Rheology Journal
    • /
    • 제15권4호
    • /
    • pp.179-185
    • /
    • 2003
  • Associating polymers act as flocculants in colloidal suspensions, because the hydrophobic groups (hydrophobes) can adsorb onto particle surfaces and create intermolecular cross-linking. The steady-shear viscosity and dynamic viscoelasticity were measured for suspensions flocculated by multichain bridging of associating polymers. The effects of surfactant on the suspension rheology are studied in relation to the bridging conformation. The surfactant molecule behaves as a displacer and the polymer chains are forced to desorb from the particle surfaces. The overall effect of surfactant is the reduction of suspension viscosity. However, the additions of a small amount of surfactant to suspensions, in which the degree of bridging is low, cause a viscosity increase, although the number of chains forming one bridge is decreased by the forced desorption of associating polymer. Since the polymer chains desorbed from one bridge can form another bridge between bare particles, the bridging density over the system is increased. Therefore, the surfactant adsorption leads to a viscosity increase. The surfactant influences the viscosity in two opposing ways depending on the degree of bridging.

Study on the variation of cellular physiology of Escherichia coli during high cell density cultivation using 2-dimensional gel electrophoresis

  • 윤상선;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.219-222
    • /
    • 2000
  • Physiological changes of Escherichia coli during the fed-batch fermentation process were characterized in this study. Overall cellular protein samples prepared at the different stage of fermentation were separated by 2-dimensional gel electrophoresis (2-DE), and differently expressed 15 proteins, Phosphotransferase enzyme I, GroEL, Trigger factor, ${\beta}$ subunit of ATP synthase, Transcriptional regulator KDGR, Phosphoglycerate mutase 1, Inorganic pyrophosphatase, Serine Hydroxymethyl-transferase, ${\alpha}$ subunit of RNA polymerase, Elongation factor Tu, Elongation factor Ts, Tyrosine-tRNA ligase, DnaK suppressor protein, Transcriptional elongation factor, 30S ribosomal protein S6 were identified using matrix-assisted laser desorption / ionization time-of-flight mass spectrometry (MALDI-TOF MS). When bacterial cells grow to high cell density, and IPTG-inducible heterologous protein is produced, expression level of overall cellular proteins was decreased. According to their functions in the cell, identified proteins were classified into three groups, proteins involved in transport process, small-molecule metabolism, and synthesis and modification of macromolecules.

  • PDF

Ca2+-regulated ion channels

  • Cox, Daniel H.
    • BMB Reports
    • /
    • 제44권10호
    • /
    • pp.635-646
    • /
    • 2011
  • Due to its high external and low internal concentration the $Ca^{2+}$ ion is used ubiquitously as an intracellular signaling molecule, and a great many $Ca^{2+}$-sensing proteins have evolved to receive and propagate $Ca^{2+}$ signals. Among them are ion channel proteins, whose $Ca^{2+}$ sensitivity allows internal $Ca^{2+}$ to influence the electrical activity of cell membranes and to feedback-inhibit further $Ca^{2+}$ entry into the cytoplasm. In this review I will describe what is understood about the $Ca^{2+}$ sensing mechanisms of the three best studied classes of $Ca^{2+}$-sensitive ion channels: Large-conductance $Ca^{2+}$-activated $K^+$ channels, small-conductance $Ca^{2+}$-activated $K^+$ channels, and voltage-gated $Ca^{2+}$ channels. Great strides in mechanistic understanding have be made for each of these channel types in just the past few years.

견섬유의 염색에 있어서 아세토페논의 영향 (The Effect of Acetophenone on the Dyeing of Silk)

  • 김태경;임용진;박태수
    • 한국염색가공학회지
    • /
    • 제10권5호
    • /
    • pp.56-62
    • /
    • 1998
  • In the prior study, the dyeing behaviors of Milling Cyanine 5R on silk fiber in aqueous dyeing liquor including small amount of organic compounds were investigated. The most effective compound was acetophenone which increased dye uptake as well as dyeing rate. In this study, the role of the acetophenone in dyeing of silk with Milling Cyanine 5R was studied. By addition of acetophenone into the dye solution, the molar absorptivity of Milling Cyanine 5R increased, and the wavelength of maximum absorption was shifted to longer wavelength, namely bathochromic shifted. This shows that the acetophenone prevents the dye to aggregate, and increases the number of monomeric dye molecule relative to the dye solution without acetophenone. This fact was also confirmed by the increase of the permeation rate of the dye through cellulose semipermeable membrane from the dye solution including the acetophenone. From these results, the acetophenone acts as a prohibitor of dye aggregation, increases the number of monomeric dye molecules even at relatively low temperature, and makes the dyes penetrate into the fiber easier.

  • PDF

Polymer blending에 따른 TIPS-Pentacene의 특성 변화 (The electrical properties change of TIPS-Pentacene due to polymer blending)

  • 임창윤;김영훈;한정인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1499-1500
    • /
    • 2011
  • In this paper, we investigated the electrical properties change of 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) depending on polymer blend. We fabricated organic thin film transistor (OTFT) using blending solution of small molecule and polymer. In this study poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene-vinylene) (MEH-PPV), poly (9-vinylcarbazole) (PVK), poly [N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] (poly-TPD), poly(${\alpha}$-methyl styrene), Poly(methyl methacrylate) (PMMA) are used as a polymer. Fabricated OTFT with blending solution of TIPS-pentacene and PVK shows best performance in this experiment. OTFT fabricated by blending solution of TIPS-pentacene and PVK shows field effect mobility of 0.0189 $cm^2/V{\cdot}s$, on/off ratio of 1.9E-5 and threshold voltage of 7.4 V.

  • PDF