• Title/Summary/Keyword: Small electric vehicle

Search Result 115, Processing Time 0.025 seconds

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Seong-Wook;Kim, Dong-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.226-230
    • /
    • 2010
  • In this paper, the performance of an electric powered small Unmanned Aerial Vehicle which has a battery and electric motor is analysed. Aerodynamic data is obtained through flight test and flight performance is predicted. As a result, we present the optimum flight speed for the maximum endurance and predict endurance and range according to the variation of flight speed.

  • PDF

A Study about the Necessity of Cooperation in Technologies for Small Electric Vehicles in Major ASEAN Countries (소형 전기 상용차산업의 아세안 지역 적용 연구)

  • LIM, JAE WAN;WON, JANG HYEOK;LEE, CHUN BEOM;LIM, OCK TAECK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.271-276
    • /
    • 2021
  • Although the development of electric vehicles or electric commercial vehicles is underway in Korea, most companies are seeking to enter the global market because it is difficult to expand their business only in the domestic market. In addition, it is recognized that the country has difficulties in responding to regulations or related procedures when entering overseas markets, and due to such difficulties, it is not possible to gain opportunities to enter the market and gain the technical advantage. Therefore, it is necessary to support individual companies to overcome the difficulties of promoting and exporting products by establishing a pre-cycle support environment for technology development so that development parts can be installed in small electric commercial vehicles. Therefore, this study tried to understand the necessity and factors of small electric commercial vehicles for major ASEAN countries, and as a result, most of them raised the urgency and necessity of joint research.In addition, human resource development, government support, and technical support were suggested as the necessary factors for the study.

An Experimental and Numerical Investigation of the Structural Durability of Vehicle Frames in Small Electric Sweepers (소형전기청소차(Small E-Sweeper) 프레임의 실험 및 수치해석을 통한 구조강도 연구)

  • Cho, Kyu-Chun;Lee, Ji-Sun;Shin, Haeng-Woo;Jang, Myeong-Kyun;Yu, Jik-Su;Jeong, Min-Kwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.116-124
    • /
    • 2021
  • In this study, the reliability of vehicle frames employed in small electric road sweepers was assessed through durability testing. The frames were tested under three conditions, whereby mechanical loads were applied to (1) the entire frame, (2) the front frame, and (3) the rear frame. The strain distributions in the loaded frames were determined through a combination of direct strain gauge measurements and supplementary numerical analysis. While subtle differences were observed between the experimental and numerical analyses, both methods successfully yielded comparable deformation patterns. Thus, the dependence of stress distribution and the state of the frame on loading conditions could be fully identified through our combined structural and numerical analysis.

A Study on Optimal Operation Strategy for Mild Hybrid Electric Vehicle Based on Hybrid Energy Storage System

  • Bae, SunHo;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.631-636
    • /
    • 2018
  • This paper proposed an optimal operation strategy for a hybrid energy storage system (HESS) with a lithium-ion battery and lead-acid battery for mild hybrid electric vehicles (mild HEVs). The proposed mild HEV system is targeted to mount the electric motor and the battery to a conventional internal combustion engine vehicle. Because the proposed mild HEV includes the motor and energy storage device of small capacity, the system focuses on low system cost and small size. To overcome these limitations, it is necessary to use a lead acid battery which is used for a vehicle. Thus, it is possible to use more energy using HESS with a lithium battery and a lead storage battery. The HESS, which combines the lithium-ion battery and the secondary battery in parallel, can achieve better performance by using the two types of energy storage systems with different characteristics. However, the system requires an operation strategy because accurate and selective control of the batteries for each situation is necessary. In this paper, an optimal operation strategy is proposed considering characteristics of each energy storage system, state-of-charge (SOC), bidirectional converters, the desired output power, and driving conditions in the mild HEV system. The performance of the proposed system is evaluated through several case studies with respect to energy capacity, SOC, battery characteristic, and system efficiency.

Optimal Power Distribution for an Electric Vehicle with Front In-line Rear In-wheel Motors (전륜 인라인 후륜 인휠 모터 적용 전기자동차의 최적 동력 분배)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2014
  • In this paper, an optimal power distribution algorithm is proposed for the small electric vehicle with front in-line and rear in-wheel motors. First, it is assumed that the vehicle driving torque and velocity are given conditions. And, an optimal problem is defined that finding the front and rear motor torques which minimizes the battery power. From the above optimization problem, the optimized front-rear motor torque distribution map is obtained. And, the vehicle simulations are performed to verify the performance of the optimal power distribution algorithm which is proposed in this study. The simulations are performed based on the federal urban driving schedule for two cases which are constant ratio power distribution, and optimal power distribution. From the simulation results, it is found that the optimal power distribution shows the 6.3% smaller battery energy consumption than the constant ratio power distribution.

Performance Analysis of an Electric Powered Small Unmanned Aerial Vehicle (전기동력 소형무인항공기의 성능분석)

  • Lee, Chang-Ho;Kim, Sung-Yug;Kim, Dong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.65-70
    • /
    • 2010
  • A small unmanned aerial vehicle(UAV), which uses a propulsion system consisting of electric motor and battery, weighs less than 8 kg, capable of hand launch. Because it is easy to operate and able to transmit image information in real time, the use of small UAV has been increasing. However, very few analysis methods or analysis results on flight performance of the small UAV have been known so far. In this paper, the performance analysis methods of a small UAV, which is manufactured to study an electric powered UAV, are suggested and their results are achieved. Aerodynamic data of the vehicle are obtained by making use of gliding performance from actual flight test, and required thrust and required power by flight speed are predicted. In addition, the methods to predict range and endurance in case of using battery as power source are suggested and their results are achieved.

A Study on Modular Design of Brake System and Application Method for Small-Medium EV Architecture (제동시스템 모듈러 설계 및 중소형 EV 아키텍처 적용 방안에 관한 연구)

  • J. H. Shim;U. H. Shin;S. R. Hwang;J. H. Lee;W. S.Yim;Y. J. Woo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.27-33
    • /
    • 2023
  • Electric vehicles are widely produced from many car manufacturers around the world instead of internal combustion engine vehicle in order to respond a variety of environmental regulations. Also, they are applying for modular design method to develop plenty of the vehicles. And, both of these two issues will be an important trend to lead the future global automobile industries for a long time. In this paper, new brake architecture concept is proposed in order to respond to such a situation. First, physical interfaces between brake system like caliper, disc and other counter-parts are established for modular assembly. Second, we analyze effective factors of brake system for electric vehicles which need to reflect vehicle specifications such as total vehicle weight. Here, we consider ideal brake force by critical deceleration. Third, we simulate accumulated regenerative brake energy for two main driving modes to confirm to effectiveness for a variety of Electric Vehicle. Finally, we hope that it contributes to implement brake architecture for the development of Electric Vehicle platform through such a study.

Operation Algorithm for a Parallel Hybrid Electric Vehicle with a Relatively Small Electric Motor

  • Kyoungcheol Oh;Kim, Donghyeon;Kim, Talchol;Kim, Chulsoo;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.30-36
    • /
    • 2004
  • In this paper, operation algorithms for a parallel HEV equipped with a relatively small motor are investigated. For the HEV, the power assist and the equivalent fuel algorithms are proposed. In the power assist algorithm, an electric motor is used to assist the engine which provides the primary power source. Tn the equivalent fuel algorithm, the electric energy stored in the battery is considered to be an equivalent fuel, and an equivalent brake specific fuel consumption for the electric energy is proposed. From the equivalent fuel algorithm, distribution of the engine power and the motor power is determined to minimize the fuel consumption for a given battery state of charge (SOC) and a required vehicle power. It is found from the simulation results that the fuel economy and the final battery SOC depend on the motor discharge energy and it is the best way to charge the battery only by the regenerative braking, not by the engine to improve the overall fuel efficiency of the HEV with the relatively small motor.

A Study on Propulsion Control Device Characteristics of Small-scale Electric Railway Vehicle according to Driving Curve Tracking using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량의 운전곡선 추종에 따른 추진제어장치 특성 고찰)

  • Jung, No-Geon;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1804-1809
    • /
    • 2015
  • The study in railway system to apply a fuel cell system with high efficiency and mobility than other renewable energy is being actively conducted. It is needed a analysis on load characteristics and control method of rolling stock in order to apply to rolling stock. This paper presents study on control small-scale prototype power converter electric railway vehicle using fuel cell generation system. Experiment is conducted through real fuel cell generation system and reference speed applying the driving curve of the actual electric railway vehicle was applied. Also, output voltage of boost converter is controlled considering characteristic of fuel cell. And it was confirmed characteristic according to powering and regeneration of inverter.

Electric power Small fixed wing UAV Aerodynamic performance Analysis (전기 동력 소형 고정익 무인항공기 공력성능 연구)

  • Jeong, Seongrok
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2019
  • In this paper, the performance of a small fixed wing unmanned aerial vehicle is predicted theoretically with the minimum specifications and a low Reynolds number. Based on the results, it was compared with the results of an actual flight test and simple electric motor wind tunnel test. As a result of the validity of the analysis, a 3.5 kilograms class fixed wing small UAV can predict aerodynamic performance by general theory analysis. However, the required thrust was analyzed as a possible design error. Based on the results of this study, this paper proposed a method to minimize the design error when developing small fixed wing UAV flying in a low Reynolds number.