• Title/Summary/Keyword: Small electric vehicle

Search Result 116, Processing Time 0.03 seconds

GUI-based integrated monitoring system for small sized fuel cell ship (소형 연료전지 선박을 위한 GUI 기반의 통합 모니터링 시스템)

  • Lee, Hunseok;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2235-2242
    • /
    • 2016
  • The electric power system based on fuel cell is applied in various forms to the ship and offshore plants. In particular, a research on the hybrid power system of the fuel cell combined with battery in connection topology has been researched actively. Fuel cell-based hybrid ship has not been carried out research, it is not carried out research in the integrated monitoring system. In this paper, we developed an integrated monitoring system to increase the convenience and stability for the hybrid fuel-cell ship operator. Research into integrated monitoring system based on GUI (Graphic User Interface), in consideration of the stability of the user convenience and ship operations, and developed communication and hardwired signal with the main equipment of the ship, to see in realtime state of the ship. The collected ship operation data is stored and it can be seen after the ship operating.

Development of the Calorimeter to Measure Heat Rate Generated from Battery for EV & HEV (전기자동차용 축전지의 발열량 측정을 위한 열용량계 개발)

  • Yang Cheol-Nam;Park Seong-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.4
    • /
    • pp.218-220
    • /
    • 1999
  • The performance of the Electric Vehicle and Hybrid Electric Vehicle depends on that of the battery pack composed of series connected batteries. And thermal property is one of the main factors which decide the performance of the battery pack. So heat generation rate from the battery under the various driving mode must be measured as precise as possible because thermal characteristics of the battery affect the driving performance and battery pack's life cycle. Besides, to design and develop the battery thermal management system for the EV and HEV, the measurements of the thermal properties of the batteries are needed. However, the established calorimeter is not adequate to test an EV's battery because its cavity is too small to accommodate the EV's battery. Therefore we developed the calorimeter to test the thermal property of the EV's battery. Its cavity size is 120mm long, 75mm wide and 200mm high. The calorimeter is calibrated by the dummy cell which generates the heat rate from zero to 200W. The measuring accuracy of the calorimeter is within $2\%$ and its voltage stability is 2.5mV in the constant temperature bath.

Environmental and Economic Impact of EV and FCEV Penetration into the Automobile Industry: A CGE Approach (전기 및 수소차 보급 확산의 환경적·경제적 영향분석: 계산가능일반균형모형(CGE)의 적용)

  • Han, Taek-Whan;Lim, Dongsoon;Kim, Jintae
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.231-276
    • /
    • 2019
  • This paper analyzed the impact of the penetration of EV(electric vehicle) and FCEV(fuel cell electric vehicle) into the automobile industry, using a static CGE approach. There are contrasting view on the economic impact of EV/FCEV penetration: negative economic impact due to shrunken intermediate inputs versus positive impact because of input saving technical progress. Regarding environment, there is no clear consensus whether EV or FCEV will contribute to the reduction of $CO_2$ emissions in Korea. This study attempts to provide an answer to these questions. By giving shocks to the input coefficients of automobile industries and automobile using sectors, as well as to the final demands for energies. we integrated the Bass diffusion model into the CGE framework, The result suggests that the EV penetration has adverse impact on the $CO_2$ emission while the FCEV penetration has positive impact. On the other hand, both EV and FCEV have positive impacts on GDP. When considering automobile manufacturing sectors only, adverse impacts on $CO_2$ are demonstrated both for EV and FCEV. However, since the size of $CO_2$ increase is small, these results does not alter the overall effects.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

Development of Direct drive Electro-mechanical Actuation System for Thrust Vector Control of KSLV-II (한국형발사체 추력벡터제어 직구동 방식 전기기계식 구동장치시스템 개발)

  • Lee, Hee-Joong;Kang, E-Sok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.911-920
    • /
    • 2016
  • For the pitch and yaw axis attitude control of launch vehicle, thrust vector control which changes the direction of thrust during the engine combustion is commonly used. Hydraulic actuation system has been used generally as a drive system for the thrust vector control of launch vehicles with the advantage of power-to-weight ratio. Nowadays, due to the developments of highly efficient electric motor and motor control techniques, it has done a lot of research to adopt electro-mechanical actuator for thrust vector control of small-sized launch vehicles. This paper describes system design and test results of the prototype of direct drive electro-mechanical actuation system which is being developed for the thrust vector control of $3^{rd}$ stage engine of KSVL-II.

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

Transmission Interval Optimization by Analysis of Collision Probability in Low Power TPMS (저전력 운영 TPMS에서 충돌 확률 분석을 통한 전송주기 최적화)

  • Lim, Sol;Choi, Han Wool;Kim, Dae Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.364-371
    • /
    • 2017
  • TPMS is a vehicle electric system that measures the air pressure of a tire, and informs the driver of current tire states. The TPMS sensor typically uses unidirectional communication for small size, light weight, and low power. The transmission period of the sensor indicates the service quality of monitoring the tire. In order to determine the optimal transmission period, frame collision probability and the life time of the sensor should be analyzed. In this paper, collision probability model using Venn diagram is designed in low power TPMS with the normal and warning mode. And the life time and a collision probability were analyzed with the ratio(n) of the normal mode to warning mode transmission period. As a result, $T_{nP}=31sec$ and $T_{wP}=2.4sec$ at 5 years, and $T_{nP}=71sec$ and $T_{wP}=2.5sec$ at 7 years.

Structure Analysis of Li-ion Battery Using Neutron Beam Source (중성자를 이용한 리튬이온 이차전지 전극 구조분석)

  • Kim, Chang-Seob;Park, Heon-Yong;Liang, Lianhua;Kim, Ji-Young;Seong, Baek-Seok;Kim, Keon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.20-24
    • /
    • 2007
  • Lithium ion secondary battery has been applied widely to portable devices, and has been studied for application to high power electric cell system such as power tool or hybrid electronic vehicle. The structure change of the electrodes materials occur when lithium ions move between electrodes. Neutron or X-rays can analyze the structure of electrode. The advantage of X-rays is convenient in test. However X-rays is scattered by electron cloud in atoms. Therefore, The elucidation for correct position of lithium is difficult with X-rays because lithium has small atomic weight. Neutron analysis techniques could solve this problem. In this review, We wish to discuss about structure analysis and the principle of structural characterization method using neutron beam source.

A study on the Power Characteristics of Hybrid Power System by Active Power Management (능동전력제어에 의한 하이브리드 동력시스템의 출력특성 연구)

  • Lee, Bohwa;Park, Poomin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.833-841
    • /
    • 2016
  • The 200 W electrically powered unmanned aerial vehicle, which is studied in this research, uses solar cells, a fuel cell and batteries as the main power source simultaneously. The output of each power source performs power control for each power source by the active power control method so that an adequate capacity of the battery could be maintained while limiting the maximum output of the fuel cell. The output variation for each power source under the active power control method was identified through an integrated ground test. In addition, the effect of limiting the maximum output of the fuel cell on the output variation of the entire system was experimentally identified, and it was confirmed that the adequate maximum output value of the fuel cell for preventing the overdischarge of six series-connected, small size batteries for fuel cell systems is 150 W.