• Title/Summary/Keyword: Small drone

Search Result 133, Processing Time 0.024 seconds

Survey on Developing Autonomous Micro Aerial Vehicles (드론 자율비행 기술 동향)

  • Kim, S.S.;Jung, S.G.;Cha, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • As sensors such as Inertial Measurement Unit, cameras, and Light Detection and Rangings have become cheaper and smaller, research has been actively conducted to implement functions automating micro aerial vehicles such as multirotor type drones. This would fully enable the autonomous flight of drones in the real world without human intervention. In this article, we present a survey of state-of-the-art development on autonomous drones. To build an autonomous drone, the essential components can be classified into pose estimation, environmental perception, and obstacle-free trajectory generation. To describe the trend, we selected three leading research groups-University of Pennsylvania, ETH Zurich, and Carnegie Mellon University-which have demonstrated impressive experiment results on automating drones using their estimation, perception, and trajectory generation techniques. For each group, we summarize the core of their algorithm and describe how they implemented those in such small-sized drones. Finally, we present our up to date research status on developing an autonomous drone.

Semantic Segmentation of Heterogeneous Unmanned Aerial Vehicle Datasets Using Combined Segmentation Network

  • Ahram, Song
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.87-97
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs) can capture high-resolution imagery from a variety of viewing angles and altitudes; they are generally limited to collecting images of small scenes from larger regions. To improve the utility of UAV-appropriated datasetsfor use with deep learning applications, multiple datasets created from variousregions under different conditions are needed. To demonstrate a powerful new method for integrating heterogeneous UAV datasets, this paper applies a combined segmentation network (CSN) to share UAVid and semantic drone dataset encoding blocks to learn their general features, whereas its decoding blocks are trained separately on each dataset. Experimental results show that our CSN improves the accuracy of specific classes (e.g., cars), which currently comprise a low ratio in both datasets. From this result, it is expected that the range of UAV dataset utilization will increase.

Automated 3D Model Reconstruction of Disaster Site Using Aerial Imagery Acquired By Drones

  • Kim, Changyoon;Moon, Hyounseok;Lee, Woosik
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.671-672
    • /
    • 2015
  • Due to harsh conditions of disaster areas, understanding of current feature of collapsed buildings, terrain, and other infrastructures is critical issue for disaster managers. However, because of difficulties in acquiring the geographical information of the disaster site such as large disaster site and limited capability of rescue workers, comprehensive site investigation of current location of survivors buried under the remains of the building is not an easy task for disaster managers. To overcome these circumstances of disaster site, this study makes use of an unmanned aerial vehicle, commonly known as a drone to effectively acquire current image data from the large disaster areas. The framework of 3D model reconstruction of disaster site using aerial imagery acquired by drones was also presented. The proposed methodology is expected to assist rescue workers and disaster managers in achieving a rapid and accurate identification of survivors under the collapsed building.

  • PDF

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Experiments of Individual Tree and Crown Width Extraction by Band Combination Using Monthly Drone Images (월별 드론 영상을 이용한 밴드 조합에 따른 수목 개체 및 수관폭 추출 실험)

  • Lim, Ye Seul;Eo, Yang Dam;Jeon, Min Cheol;Lee, Mi Hee;Pyeon, Mu Wook
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.67-74
    • /
    • 2016
  • Drone images with high spatial resolution are emerging as an alternative to previous studies with extraction limits in high density forests. Individual tree in the dense forests were extracted from drone images. To detect the individual tree extracted through the image segmentation process, the image segmentation results were compared between the combination of DSM and all R,G,B band and the combination of DSM and R,G,B band separately. The changes in the tree density of a deciduous forest was experimented by time and image. Especially the image of May when the forests are dense, among the images of March, April, May, the individual tree extraction rate based on the trees surveyed on the site was 50%. The analysis results of the width of crown showed that the RMSE was less than 1.5m, which was the best result. For extraction of the experimental area, the two sizes of medium and small trees were extracted, and the extraction accuracy of the small trees was higher. The forest tree volume and forest biomass could be estimated if the tree height is extracted based on the above data and the DBH(diameter at breast height) is estimated using the relational expression between crown width and DBH.

Development of application for guidance and controller unit for low cost and small UAV missile based on smartphone (스마트폰을 활용한 소형 저가 유도탄 유도조종장치용 어플리케이션 개발)

  • Noh, Junghoon;Cho, Kyongkuk;Kim, Seongjun;Kim, Wonsop;Jeong, Jinseob;Sang, Jinwoo;Park, Chung-Woon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.610-617
    • /
    • 2017
  • In the recent weapon system trend, it is required to develop small and low cost guidance missile to track and strike the enemy target effectively. Controling the such small drone typed weapon demands a integrated electronic device that equipped with not only a wireless network interface, a high resolution camera, various sensors for target tracking, and position and attitude control but also a high performance processor that integrates and processes those sensor outputs in real-time. In this paper, we propose the android smartphone as a solution for that and implement the guidance and control application of the missile. Furthermore, the performance of the implemented guidance and control application is analyzed through the simulation.

Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone) (보급형 회전익 무인항공기(드론)를 이용한 소규모 노천광산의 지형측량)

  • Lee, Sungjae;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.462-469
    • /
    • 2015
  • This study carried out a topographic survey at a small-scale open-pit limestone mine in Korea (the Daesung MDI Seoggyo office) using a popular rotary-wing unmanned aerial vehicle (UAV, Drone, DJI Phantom2 Vision+). 89 sheets of aerial photos could be obtained as a result of performing an automatic flight for 30 minutes under conditions of 100m altitude and 3m/s speed. A total of 34 million cloud points with X, Y, Z-coordinates was extracted from the aerial photos after data processing for correction and matching, then an orthomosaic image and digital surface model with 5m grid spacing could be generated. A comparison of the X, Y, Z-coordinates of 5 ground control points measured by differential global positioning system and those determined by UAV photogrammetry revealed that the root mean squared errors of X, Y, Z-coordinates were around 10cm. Therefore, it is expected that the popular rotary-wing UAV photogrammetry can be effectively utilized in small-scale open-pit mines as a technology that is able to replace or supplement existing topographic surveying equipments.

Availability Analysis on Detection of Small Scale Gas Emission Facilities using Drone Imagery (드론영상을 이용한 소규모 가스 배출시설 탐지 가능성 분석)

  • Shin, Jung-Il;Kim, Ik-Jae;Hwang, Dong-Hyun;Lee, Jong-Min;Lim, Seong-Ha
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.213-223
    • /
    • 2017
  • Recently, the air quality of South Korea has deteriorated and public interest has been increasing. Various observation means are used for the monitoring of the atmospheric environment, but it relies on the experience and judgment of the observer in the absence of spatial information on the emission facilities. The purpose of this study was to determine the availability of using drones for monitoring air pollutant emission facilities. A texture transformation method was applied to the drone ortho image to detect the small gas emission facility and the slope data calculated by the digital surface model (DSM) was used to reduce the false alarm ratio. As a result, it shows the possibility of using drones in the detection of small gas emission facilities by showing about 80% of positive detection ratio and 40% of false alarm ratio. In the future, various researches are required to the improve positive detection ratio and the reduction of the false alarm ratio. Based on these results, it is necessary to construct a database including 3D spatial information of air pollutant emission facilities.

Study on Combat Efficiency According to Change in Quantity of Small Reconnaissance Drones in the Infantry Company Responsibility Area (중대급 작전지역에서 소형 감시정찰 드론의 수량 변화에 따른 전투 효율 연구)

  • Kyongsoo, Kim;Yongchan, Bae
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.4
    • /
    • pp.23-31
    • /
    • 2022
  • The development of innovative technology through the 4th Industrial Revolution is actively used in the defense field. In particular, surveillance and reconnaissance capabilities using drones will be of great help to the development of military combat capabilities, such as preparing for future military personnel reductions and reinforcing alert capabilities. In this study, we analyze the combat efficiency of drones how helpful drones can be to the military operations through simulations. Drones and enemy move in the efficient shortest path within a two-dimensional space in which operational areas are mapped into number such as detection probability. Based on the detection probability of an enemy infiltrating along the path with the lowest detection probability, the detection probability change that occurs whenever a drone is additionally deployed is presented, and we analyze the combat efficiency according to the additional drone input. Simulation proves that the increase in combat efficiency decreases as more drones are added in small operational areas such as company-level operational areas. This study is expected to contribute to the efficient operation of a limited number of drones in company-level units and to help determine the most desirable quantity of drones for additional combat power improvement.