• Title/Summary/Keyword: Small bridge

Search Result 536, Processing Time 0.025 seconds

A Study on Stream Morphologic and Hydraulic Characteristics of Wonju Stream (원주천의 하천형태학적 및 수리학적 특성연구)

  • Choe, Hong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.75-82
    • /
    • 1997
  • The stream morphologic characteristics of Wonju stream with small watershed are developed with a regular correlation referred to the Horton-Strahler's lows of stream order. Using Manning's formula and the discharges simulated by NWS-PC rainfallrunoff model that has been applied to the adjacent basin for model calibration and verification, the hydraulic characteristics at Wonju bridge are investigated. The peak discharge and the time to peak of unit hydrograph are analyzed by the calculated geomorphologic parameters. Rather primitive as this study is, these results are provided to be used for geomorphologic instantaneous unit hydropraph of ungaged basins including this study area. Through the reestablishment of rating curve and hydrograph with continuous field observations, the hydrologic and hydraulic characteristics of Wonju stream must be presented.

  • PDF

Submodule Level Distributed Maximum Power Point Tracking PV Optimizer with an Integrated Architecture

  • Wang, Feng;Zhu, Tianhua;Zhuo, Fang;Yi, Hao;Shi, Shuhuai
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1308-1316
    • /
    • 2017
  • The distributed maximum power point tracking (DMPPT) concept is widely adopted in photovoltaic systems to avoid mismatch loss. However, the high cost and complexity of DMPPT hinder its further promotion in practice. Based on the concept of DMPPT, this paper presents an integrated submodule level half-bridge stack structure along with an optimal current point tracking (OCPT) control algorithm. In this full power processing integrated solution, the number of power switches and passive components is greatly reduced. On the other hand, only one current sensor and its related AD unit are needed to perform the ideal maximum power generation for all of the PV submodules in any irradiance case. The proposal can totally eliminate different small-scaled mismatch effects in real-word condition and the true maximum power point of each PV submodule can be achieved. As a result, the ideal maximum power output of the whole PV system can be achieved. Compared with current solutions, the proposal further develops the integration level of submodule DMPPT solutions with a lower cost and a smaller size. Moreover, the individual MPPT tracking for all of the submodules are guaranteed.

A Parametric Study for Bending Behavior of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 휨거동에 관한 매개변수 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2396-2402
    • /
    • 2012
  • In recent years, the use of hybrid fiber reinforced polymer(FRP)-concrete members with a dual purpose of both formwork and reinforcement, has been considered in some structures and has been applied in a small number of bridge decks. Numerical simulations of the beam failure tests were performed using nonlinear finite element program and a parametric study was performed with variables of perfobond shape. The ultimate strength was increased with perfobond shape because of dowel action. It was showed a good performance in case of approximately perforate diameter 25~35mm in this case.

Wireless sensor networks for long-term structural health monitoring

  • Meyer, Jonas;Bischoff, Reinhard;Feltrin, Glauco;Motavalli, Masoud
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.263-275
    • /
    • 2010
  • In the last decade, wireless sensor networks have emerged as a promising technology that could accelerate progress in the field of structural monitoring. The main advantages of wireless sensor networks compared to conventional monitoring technologies are fast deployment, small interference with the surroundings, self-organization, flexibility and scalability. These features could enable mass application of monitoring systems, even on smaller structures. However, since wireless sensor network nodes are battery powered and data communication is the most energy consuming task, transferring all the acquired raw data through the network would dramatically limit system lifetime. Hence, data reduction has to be achieved at the node level in order to meet the system lifetime requirements of real life applications. The objective of this paper is to discuss some general aspects of data processing and management in monitoring systems based on wireless sensor networks, to present a prototype monitoring system for civil engineering structures, and to illustrate long-term field test results.

Ultrastructure and Mrphological Fatures of Mcoplasma pneumoniae during Clture Dvelopment (Mycoplasma Pnemoniae 세포의 발달과정 중 미세구조 및 형태학적 특징)

  • Kim, Chi-Kyung;Pfister Robert M.;Somerson Norman L.
    • Korean Journal of Microbiology
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1979
  • Mycoplasma pneumoniae strain CL-s attached to broth-covered surfaces was examined sequentially during growth from single cells for morphologic and ultrastructural changes using several different electron microscopic techniques. Changes in morphology revealed both round and spindle shapes and observation of cell transitions suggested some type of morphological cycle. The round to-ovoid cells observed in the early stages of growth appeared to be viable, and morphologically and ultrastructurally different from the spherical fors which were produced during the latter stage of growth. The spindle segments were detected appeared to be structurally the same as the terminal cored structure seen in thin sections and may be a growing point or an attachment site of the cell. A tubular structure was observed in the core of the terminal structure and a microtubule-like element appeared to bridge between some spindle segments. A matrix sunstance was observed around single cells as well in the intercellular space of the colonies prepared by critical point metrical triple-layered cytoplasmic mermbranes, surfaces, of which appeared to be structurally different each other, were observed in young cells, whereas symmetrical and thicker membranes were seen in older cells. Small bodies were found in 4d or older cultures and did not appear to contain any internal structures or an easily detectable unit membrane.

  • PDF

Speed Control of Switch Reluctance Motor using Modified Anti-Windup PI Controller and Braking Mode (Modified Anti-Windup PI 제어기와 Braking Mode를 이용한 SRM의 속도 제어)

  • Kim, Hak-Sung;Kim, Yuen-Chung;Kim, Jae-Moon;Yoon, Yong-Ho;Won, Chung-Yuen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.33-39
    • /
    • 2007
  • In this paper, novel topology for fast response of various loads is proposed. The windup phenomenon appears and results in performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of variable speed motor drives, and it is experimentally applied to the speed control of a hysteresis current-controlled SRM driven by an asymmetry bridge converter. The experimental results show that the speed response has much improved performance, such as small overshoot and fast settling time, over the conventional PI control.

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • ;Kim, Sang-Jin;Kim, Byeong-U;Sin, Yang-Jin;Choe, Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

Design criteria of wind barriers for traffic -Part 1: wind barrier performance

  • Kwon, Soon-Duck;Kim, Dong Hyawn;Lee, Seung Ho;Song, Ho Sung
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.55-70
    • /
    • 2011
  • This study investigates the design criteria required for wind barriers to protect vehicles running on an expressway under a high side wind. At the first stage of this study, the lateral deviations of vehicles in crosswinds were computed from the commercial software, CarSim and TruckSim, and the critical wind speeds for a car accident were then evaluated from a predefined car accident index. The critical wind speeds for driving stability were found to be 35 m/s for a small passenger car, yet 30 m/s for a truck and a bus. From the wind tunnel tests, the minimum height of a wind barrier required to reduce the wind speed by 50% was found to be 12.5% of the road width. In the case of parallel bridges, the placement of two edge wind barriers plus one wind barrier at center was recommended for a separation distance larger than 20 m (four lanes) and 10 m (six lanes) respectively, otherwise two wind barriers were recommended.

Static behaviour of multi-row stud shear connectors in high- strength concrete

  • Su, Qingtian;Yang, Guotao;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.967-980
    • /
    • 2014
  • In regions of high shear forces in composite bridges, headed stud shear connectors need to be arranged with a small spacing in order to satisfy the design requirement of resisting the high interface shear force present at this location. Despite this, studies related to groups of headed studs are somewhat rare. This paper presents an investigation of the static behaviour of grouped stud shear connectors in high-strength concrete. Descriptions are given of five push-out test specimens with different arrangements of the studs that were fabricated and tested, and the failure modes, load-slip response, ultimate load capacities and related slip values that were obtained are reported. It is found that the load-slip equation given by some researchers based on a single stud shear connector in normal strength concrete do not apply to grouped stud shear connectors in high-strength concrete, and an algebraic load-slip expression is proposed based on the test results. Comparisons between the test results and the formulae provided by some national codes show that the equations for the ultimate capacity provided in these codes are conservative when used for connectors in high-strength concrete. A reduction coefficient is proposed to take into account the effect of the studs being in a group.

An Evolution of Nonlinear Dynamic Response of an Unreinforced Masonry Structure (비보강 조적조의 비선형 동적 거동의 전개)

  • Kim, Nam-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.77-84
    • /
    • 2006
  • Unlike homogeneous material structure, the behavior of masonry structure is not perfectly elastic even in the range of small deformations because it is a non-homogeneous and anisotropic composite structural material, consisting of masonry units, mortar, and grout. This paper proposes a simplified way of investigating the evolution of the deformation and damage of the structure subjected to a series of successive ground motions with varying shaking. Especially, the most simple but useful algorithm of Fast Fourier Transformation (FFT) has been adopted to investigate the evolution of the deformation and damage of the structure tested on the shaking table. Moreover, the development of a hi-linear curve for an equivalent SDOF system which is obtained by exploiting the frequency and stiffness relationship was discussed. Finally, some important findings related to inelastic properties of the URM are summarized.