• Title/Summary/Keyword: Small and medium sized shipyard

Search Result 7, Processing Time 0.021 seconds

The development of internet based ship design support system for small and medium sized shipyards

  • Shin, Sung-Chul;Lee, Soon-Sup;Kang, Dong-Hoon;Lee, Kyung-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.33-43
    • /
    • 2012
  • In this paper, a prototype of ship basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. The system is designed from the user requirements. Consequently, standardized development environment and tools are selected. These tools are used for the system development to define and evaluate core application technologies. The system will contribute to increasing competitiveness of small and medium sized shipyards in the 21st century industrial en-vironment.

Development of Internet-based Basic Planning System for Ships (인터넷 기반의 선박 기본계획 지원시스템 개발)

  • Lee S.-S.;Lee J.-K.;Lee K.-H.;Park J.-W.;Kim S.-Y.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.406-415
    • /
    • 2004
  • The industrial environment for shipbuilding in 21st century requires increase in few type of ships and marine structures, international cooperation and globalization, while virtual enterprise environment is rapidly establishing. On the other hand, more and more efforts will be spent on internet based distributed and collaborative environment rather than being spent on unit level automations such as CAD, CAM and CAE, and the link between them. Recent internet technology and information technology in heterogeneous environment are being applied in shipbuilding industry as well as in other industries. While these technology are rapidly adopted in major shipyards, many small and medium-sized shipyards does not have enough resources to introduce system designed for large enterprise. In this paper, a prototype of Internet technology based basic planning system is implemented for the small and medium sized shipyards based on the internet technology and concurrent engineering concept. First, the system is designed from the user requirements. Then standardized development environment and tools are selected. These tools are used for defining and evaluating core application technologies for the system development. This can guarantee the survival of small and medium-sized shipyards in 21st century industrial environment.

A Study for Digital Transformation Based on Collaboration Master Plan for Shipbuilding & Marine Engineering Industry

  • Seung-Uk So;Myeong-Ki Han;Young-Hun Kim;Jun-Soo Park
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.190-197
    • /
    • 2023
  • In the shipbuilding and marine industry, digital transformation activities are promoted primarily by large shipyards. However, bottlenecks are observed across value chains, and digital transformation effects are reducing because of the cost and technical challenges encountered by supplies. In this study, we proposed a win-win cooperation model for large, small, and medium-sized companies using digital transformation based on the characteristics of the shipbuilding and marine industry through case studies. We investigated the digital transformation progress in German and Korean small and medium-sized enterprises (SMEs). In addition, we identified information-sharing methods and management challenges encountered in enterprise resource planning and manufacturing execution systems in the collaboration process of pipes, panels, blocks, etc. of SMEs that are suppliers of a Korean shipyard, and clarified communication by building a platform based on a common format between shipyards and suppliers. Further, we proposed a standard model of a digital transformation system for enhancing the collaboration between large companies and suppliers and proposed a basic plan including strategies to efficiently and effectively build a digital transformation system based on the standard model.

PARAMETRIC MAIN DIMENSION FIXING OF MEDIUM SIZED BULK CARRIERS

  • LEE KWIJOO;KIM KYOUNG HWA;KARL ISAACS
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.73-78
    • /
    • 2004
  • For the preliminary stages of ship design it is necessary to develop a basic design, which specifies the main particulars of the vessel. based on the requirements given by the owner. An efficient design enables the shipyard to make a rough estimate of the construction costs and to put forward a favourable quote during the call for tenders. The parametric determination of the main particulars of the vessel involves the application of empirical formulae. These formulae have been created after detailed tests and research by maritime research institutions and researchers had been carried out. Here, the design of a medium sized Bulk Carrier (26000t dwt) with a service speed of 17 knots for carrying rice and rock phosphate has been illustrated. Medium sized Bulk Carriers (25,000t dwt - 50,000t dwt) are in steady demand among small shipping companies. They have a size advantage, in that port size restrictions do not affect their design tremendously. Nevertheless, structurally. they are one of the most difficult to build. During design, the rules of the maritime regulatory bodies were strictly adhered to.

  • PDF

A Study on the Development and Application of a Small Shipyard Customized Production Process Planning and Management System (소형조선소 맞춤형 생산공정 계획관리 시스템 개발 및 적용에 관한 연구)

  • Kim, Young-Hun;Hong, Min-Jong;Baek, Seung-Ju;Lee, Won-Seok;Jo, Yong-Hwa;Lee, Dae-Hyung;Lee, Hoon-Sick;Na, Sung-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2022
  • In general, since the types and types of ships, so complex and various variables are included to measure the amount of construction work. In addition, it is mot easy to predict the schedule or the number of working hours before ship construction, and it is also mostly inaccurate. As a result, the master plan is manually drawn up by the expert's experience, but there are limitations due to various factors. Medium and large shipyards are operating APS(Advanced Planning and Scheduling) system that reflects industrial characteristics to improve productivity in the planning stage, and utilize information from systems such as ERP(Enterprise Resource Planning) system and MES (Manufacturing Execution System). On the other hand, small shipyards rely mostly on manual work such as Excel work based on the experience of the workers. Therefore, this study intends to develop a master plan management system that can efficiently manage the production process from the business planning stage in consideration of the characteristics of small shipyards.

Curved Hull Plate Forming based on SOAP Internet Services (인터넷 서비스 기반의 선체외판 가공 연구)

  • Kim, Chan Suk;Son, Seung Hyeok;Shin, Jong Gye;Lee, Philippe
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Fabrication of the hull plate demands a lot of man-hour and a high degree of technology. In recent years, commercial shipping orders have been fallen because of intensifying competition with low price of order and labor cost. In order to solve this problem, a countermeasure such as a cost reduction is required. In this study, we are dealing with the method of supplying the forming information of the hull to the production site. We reviewed studies of hull forming that have been proposed so far to develop a method for providing hull forming information. On the basis of given production plans from the production site of shipyard, we discuss how to convert shell plate to production plan. Then, we will discuss the efficiency of the distribution method through the network about the method of hull forming. Thus, we have modified the distribution method which was proposed before. Finally, we will introduce the enhanced method for providing fabrication information of the hull plate to the small and medium-sized shipyards.

A Study on the Structural Reinforcement of the Modified Caisson Floating Dock (개조된 케이슨 플로팅 도크의 구조 보강에 대한 연구)

  • Kim, Hong-Jo;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.172-178
    • /
    • 2021
  • In the ship repair market, interest in maintenance and repair is steadily increasing due to the reinforcement of prevention of environmental pollution caused by ships and the reinforcement of safety standards for ship structures. By reflecting this effect, the number of requests for repairs by foreign shipping companies increases to repair shipbuilders in the Southwest Sea. However, because most of the repair shipbuilders in the southwestern area are small and medium-sized companies, it is difficult to lead to the integrated synergy effect of the repair shipbuilding companies. Moreover, the infrastructure is not integrated; hence, using the infrastructure jointly is a challenge, which acts as an obstacle to the activation of the repair shipbuilding industry. Floating docks are indispensable to operating the repair shipbuilding business; in addition, most of them are operated through renovation/repair after importing aging caisson docks from overseas. However, their service life is more than 30 years; additionally, there is no structure inspection standard. Therefore, it is vulnerable to the safety field. In this study, the finite element analysis program of ANSYS was used to evaluate the structural safety of the modified caisson dock and obtain additional structural reinforcement schemes to solve the derived problems. For the floating docks, there are classification regulations; however, concerning structural strength, the regulations are insufficient, and the applicability is inferior. These insufficient evaluation areas were supplemented through a detailed structural FE-analysis. The reinforcement plan was decided by reinforcing the pontoon deck and reinforcement of the side tank, considering the characteristics of the repair shipyard condition. The final plan was selected to reinforce the side wing tank through the structural analysis of the decision; in addition, the actual structure was fabricated to reflect the reinforcement plan. Our results can be used as reference data for improving the structural strength of similar facilities; we believe that the optimal solution can be found quickly if this method is used during renovation/repair.