• Title/Summary/Keyword: Small Scale Grid

Search Result 133, Processing Time 0.029 seconds

Computer simulation of the effects of anisotropic grain boundary energy on grain growth in 2-D (이방성 결정립 계면에너지의 2차원 결정립 성장에 미치는 효과에 대한 컴퓨터 모사)

  • Kim, Shin-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.178-182
    • /
    • 2012
  • The grain growth is very important because of its great influence on the various materials properties. Therefore, in this study, the effects of anisotropic grain boundary energy on grain growth in 2-D have been investigated with a large scale phase field simulation model on PC. A $2000{\times}2000$ grid system and the initial number of grains of about 73,000 were used in the computer simulation. The anisotropic ratio of grain boundary energy, ${\sigma}_{max}/{\sigma}_{min}$, has been varied from 1 to 3. As the anisotropy increased, the grain growth exponent, n, increased from 2.05 to 2.37. The grain size distribution showed a central plateau in the isotropic case, and was changed into no central plateau and the increasing population of very small grains in the anisotropic case, resulting from slowly disappearing grains. Finally, simulated microstructures were compared according to anisotropy.

Comparison of ADAM's (Asian Dust Aerosol Model) Results with Observed PM10 Data (황사농도 단기예측모델의 PM10 농도와 실측 PM10 농도의 비교 - 2006년 4월 7~9일 황사 현상에 대해 -)

  • Cho, Changbum;Chun, Youngsin;Ku, Bonyang;Park, Soon-Ung;Lee, Sang-Sam;Chung, Yun-Ang
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.87-99
    • /
    • 2007
  • Simulation results of Asian Dust Aerosol Model (ADAM) for the period of April 7-9, 2006 were analyzed, comparing with observed PM10 data. ADAM simulated around ten times lower than on-site PM10 concentration in the source regions: Zhurihe, Tongliao, Yushe, Dalian and Huimin. As the result of this low concentration, transported amounts of Asian Dust were under-estimated as well. In order to quantify a forecasting accuracy, Bias and RMSE were calculated. Even though remarkably negative Biases and high RMSEs were observed, ADAM simulation had followed well up the time of dust outbreak and a transported path. However, the emission process to generate dust from source regions requires a great enhancement. The PM10 concentration at the surface reached up to $2,300{\mu}gm^{-3}$ at Baeknyoungdo and Seoul (Mt. Gwanak), up to $1,750{\mu}gm^{-3}$ at KGAWO about 18:00 LST in April 8, respectively; however, ADAM did not simulate the same result on its second peak. It is considered that traveling Asian dust might have been lagged over the Korean peninsula by the blocking of surface high pressure. Moreover, the current RDAPS's 30 km grid resolution (which ADAM adopts as the meteorological input data) might not adequately represent small-scale atmospheric motions below planetary boundary layer.

Effects of Facing Types and Construction Procedures on the Stability of Reinforced Earth Wall (전면벽 및 축조순서가 보강토옹벽의 안정성에 미치는 영향)

  • Lim Yu-Jin;Jung Jong-Hong;Park Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.119-126
    • /
    • 2004
  • A small-scale reinforced earth wall was constructed in a laboratory to investigate the effect of wall rigidity and of construction sequence on the wall. A full continuous wall facing and a discrete wall facing were designed and constructed for tests. These two different facing systems should adapt different construction procedures due to their different facing shapes. The model wall was built with geo-grid reinforcement, sand, and facings on rigid surface. The model wall was instrumented with earth pressure gages, LVDTs, and strain gages. The experimental results have shown differences in wall behavior related to construction sequence and types of wall facing. It is found in this study that the reinforced earth wall built with full continuous facing is safer than the reinforced earth wall built with the discrete wall facing.

A Numerical Simulation of Blizzard Caused by Polar Low at King Sejong Station, Antarctica (극 저기압(Polar Low) 통과에 의해 발생한 남극 세종기지 강풍 사례 모의 연구)

  • Kwon, Hataek;Park, Sang-Jong;Lee, Solji;Kim, Seong-Joong;Kim, Baek-Min
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.277-288
    • /
    • 2016
  • Polar lows are intense mesoscale cyclones that mainly occur over the sea in polar regions. Owing to their small spatial scale of a diameter less than 1000 km, simulating polar lows is a challenging task. At King Sejong station in West Antartica, polar lows are often observed. Despite the recent significant climatic changes observed over West Antarctica, adequate validation of regional simulations of extreme weather events such as polar lows are rare for this region. To address this gap, simulation results from a recent version of the Polar Weather Research and Forecasting model (Polar WRF) covering Antartic Peninsula at a high horizontal resolution of 3 km are validated against near-surface meteorological observations. We selected a case of high wind speed event on 7 January 2013 recorded at Automatic Meteorological Observation Station (AMOS) in King Sejong station, Antarctica. It is revealed by in situ observations, numerical weather prediction, and reanalysis fields that the synoptic and mesoscale environment of the strong wind event was due to the passage of a strong mesoscale polar low of center pressure 950 hPa. Verifying model results from 3 km grid resolution simulation against AMOS observation showed that high skill in simulating wind speed and surface pressure with a bias of $-1.1m\;s^{-1}$ and -1.2 hPa, respectively. Our evaluation suggests that the Polar WRF can be used as a useful dynamic downscaling tool for the simulation of Antartic weather systems and the near-surface meteorological instruments installed in King Sejong station can provide invaluable data for polar low studies over West Antartica.

New Zealand Hydrology: Key Issues and Research Directions

  • Davie, T.J.A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1-7
    • /
    • 2007
  • New Zealand is a hydrologically diverse and active country. This paper presents an overview of the major hydrological issues and problems facing New Zealand and provides examples of some the research being undertaken to solve the problems. Fundamental to any environmental decision making is the provision of good quality hydrometric data. Reduced funding for the national hydrometric network has meant a reduction in the number of monitoring sites, the decision on how to redesign the network was made using information on geographic coverage and importance of each site. New Zealand faces a major problem in understanding the impacts of rapid land use change on water quantity and quality. On top of the land use change is overlain the issue of agricultural intensification. The transfer of knowledge about impacts of change at the small watershed scale to much larger, more complex watersheds is one that is attracting considerable research attention. There is a large amount of research currently being undertaken to understand the processes of water and nutrient movement through the vadose zone into groundwater and therefore understanding the time taken for leached nutrients to reach receiving water bodies. The largest water management issue of the past 5 years has been based around fair and equitable water allocation when there is increasing demand for irrigation water. Apart from policy research into market trading for water there has been research into water storage and transfer options and improving irrigation efficiency. The final water management issue discussed concerns the impacts of hydrological extremes (floods and droughts). This is of particular concern with predictions of climate change for New Zealand suggesting increased hydrological extremes. Research work has concentrated on producing predictive models. These have been both detailed inundation models using high quality LIDAR data and also flood models for the whole country based on a newly interpolated grid network of rainfall.

  • PDF

Performance Optimization of Numerical Ocean Modeling on Cloud Systems (클라우드 시스템에서 해양수치모델 성능 최적화)

  • JUNG, KWANGWOOG;CHO, YANG-KI;TAK, YONG-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • Recently, many attempts to run numerical ocean models in cloud computing environments have been tried actively. A cloud computing environment can be an effective means to implement numerical ocean models requiring a large-scale resource or quickly preparing modeling environment for global or large-scale grids. Many commercial and private cloud computing systems provide technologies such as virtualization, high-performance CPUs and instances, ether-net based high-performance-networking, and remote direct memory access for High Performance Computing (HPC). These new features facilitate ocean modeling experimentation on commercial cloud computing systems. Many scientists and engineers expect cloud computing to become mainstream in the near future. Analysis of the performance and features of commercial cloud services for numerical modeling is essential in order to select appropriate systems as this can help to minimize execution time and the amount of resources utilized. The effect of cache memory is large in the processing structure of the ocean numerical model, which processes input/output of data in a multidimensional array structure, and the speed of the network is important due to the communication characteristics through which a large amount of data moves. In this study, the performance of the Regional Ocean Modeling System (ROMS), the High Performance Linpack (HPL) benchmarking software package, and STREAM, the memory benchmark were evaluated and compared on commercial cloud systems to provide information for the transition of other ocean models into cloud computing. Through analysis of actual performance data and configuration settings obtained from virtualization-based commercial clouds, we evaluated the efficiency of the computer resources for the various model grid sizes in the virtualization-based cloud systems. We found that cache hierarchy and capacity are crucial in the performance of ROMS using huge memory. The memory latency time is also important in the performance. Increasing the number of cores to reduce the running time for numerical modeling is more effective with large grid sizes than with small grid sizes. Our analysis results will be helpful as a reference for constructing the best computing system in the cloud to minimize time and cost for numerical ocean modeling.

Downscaling of AMSR2 Sea Ice Concentration Using a Weighting Scheme Derived from MODIS Sea Ice Cover Product (MODIS 해빙피복 기반의 가중치체계를 이용한 AMSR2 해빙면적비의 다운스케일링)

  • Ahn, Jihye;Hong, Sungwook;Cho, Jaeil;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.687-701
    • /
    • 2014
  • Sea ice is generally accepted as an important factor to understand the process of earth climate changes and is the basis of earth system models for analysis and prediction of the climate changes. To continuously monitor sea ice changes at kilometer scale, it is demanded to create more accurate grid data from the current, limited sea ice data. In this paper we described a downscaling method for Advanced Microwave Scanning Radiometer 2 (AMSR2) Sea Ice Concentration (SIC) from 10 km to 1 km resolution using a weighting scheme of sea ice days ratio derived from Moderate Resolution Imaging Spectroradiometer (MODIS) sea ice cover product that has a high correlation with the SIC. In a case study for Okhotsk Sea, the sea ice areas of both data (before and after downscaling) were identical, and the monthly means and standard deviations of SIC exhibited almost the same values. Also, Empirical Orthogonal Function (EOF) analyses showed that three kinds of SIC data (ERA-Interim, original AMSR2, and downscaled AMSR2) had very similar principal components for spatial and temporal variations. Our method can apply to downscaling of other continuous variables in the form of ratio such as percentage and can contribute to monitoring small-scale changes of sea ice by providing finer SIC data.

Cost Estimation Model for Introduction to Virtual Power Plants in Korea (국내 가상발전소 도입을 위한 비용 추정 모델)

  • Park, Hye-Yeon;Park, Sang-Yoon;Son, Sung-Yong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.178-188
    • /
    • 2022
  • The introduction of virtual power plants is actively being discussed to solve the problem of grid acceptability caused by the spread of distributed renewable energy, which is the key to achieving carbon neutrality. However, a new business such as virtual power plants is difficult to secure economic feasibility at the initial stage of introduction because it is common that there is no compensation mechanism. Therefore, appropriate support including subsidy is required at the early stage. But, it is generally difficult to obtain the cost model to determine the subsidy level because of the lack of enough data for the new business model. In this study, a survey of domestic experts on the requirements, appropriate scale, and cost required for the introduction of virtual power plants is conducted. First, resource composition scenarios are designed from the survey results to consider the impact of the resource composition on the cost. Then, the cost estimation model is obtained using the individual cost estimation data for their resource compositions using logistic regression analysis. In the case study, appropriate initial subsidy levels are analyzed and compared for the virtual power plants on the scale of 20-500MW. The results show that mid-to-large resource composition cases show 29-51% lower cost than small-to-large resource composition cases.

Prediction of Seabed Topography Change Due to Construction of Offshore Wind Power Structures in the West-Southern Sea of Korea (서남해에서 해상풍력구조물의 건설에 의한 해저지형의 변화예측)

  • Jeong, Seung Myung;Kwon, Kyung Hwan;Lee, Jong Sup;Park, Il Heum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.423-433
    • /
    • 2019
  • In order to predict the seabed topography change due to the construction of offshore wind power structures in the west-southern sea of Korea, field observations for tides, tidal currents, suspended sediment concentrations and seabed sediments were carried out at the same time. These data could be used for numerical simulation. In numerical experiments, the empirical constants for the suspended sediment flux were determined by the trial and error method. When a concentration distribution factor was 0.1 and a proportional constant was 0.05 in the suspended sediment equilibrium concentration formulae, the calculated suspended sediment concentrations were reasonably similar with the observed ones. Also, it was appropriate for the open boundary conditions of the suspended sediment when the south-east boundary corner was 11.0 times, the south-west was 0.5 times, the westnorth 1.0 times, the north-west was 1.0 times and the north-east was 1.0 times, respectively, using the time series of the observed suspended sediment concentrations. In this case, the depth change was smooth and not intermittent around the open boundaries. From these calibrations, the annual water depth change before and after construction of the offshore wind power structures was shown under 1 cm. The reason was that the used numerical model for the large scale grid could not reproduce a local scour phenomenon and they showed almost no significant velocity change over ± 2 cm/s because the jacket structures with small size diameter, about 1 m, were a water-permeable. Therefore, it was natural that there was a slight change on seabed topography in the study area.

Spatial Gap-filling of GK-2A/AMI Hourly AOD Products Using Meteorological Data and Machine Learning (기상모델자료와 기계학습을 이용한 GK-2A/AMI Hourly AOD 산출물의 결측화소 복원)

  • Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Park, Ganghyun;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.953-966
    • /
    • 2022
  • Since aerosols adversely affect human health, such as deteriorating air quality, quantitative observation of the distribution and characteristics of aerosols is essential. Recently, satellite-based Aerosol Optical Depth (AOD) data is used in various studies as periodic and quantitative information acquisition means on the global scale, but optical sensor-based satellite AOD images are missing in some areas with cloud conditions. In this study, we produced gap-free GeoKompsat 2A (GK-2A) Advanced Meteorological Imager (AMI) AOD hourly images after generating a Random Forest based gap-filling model using grid meteorological and geographic elements as input variables. The accuracy of the model is Mean Bias Error (MBE) of -0.002 and Root Mean Square Error (RMSE) of 0.145, which is higher than the target accuracy of the original data and considering that the target object is an atmospheric variable with Correlation Coefficient (CC) of 0.714, it is a model with sufficient explanatory power. The high temporal resolution of geostationary satellites is suitable for diurnal variation observation and is an important model for other research such as input for atmospheric correction, estimation of ground PM, analysis of small fires or pollutants.