• Title/Summary/Keyword: Small Punch

Search Result 163, Processing Time 0.022 seconds

Stress Corrosion Cracking Susceptibility Evaluation by Small Punch Test (소형펀치시험법에 의한 응력부식균열 감수성평가에 관한 연구)

  • 유효선;이송인;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2033-2042
    • /
    • 1993
  • In conventional SCC susceptibility test, there are constant strain test, constant load test, slow strain rate test(SSRT) and K$_{ISCC}$ test. Among them, the SSRT method is much more aggressive in producing SCC than the other tests, so that the test time of it is considerably reduced. But this SSRT method has mostly been worked using the uniaxial tensile specimen untill now. Therefore, the SSRT method using the tensile specimen(Ten-SSRT) has much difficulty in SCC susceptibility evaluation of a localized region like weldment and the advantage material of high order. Recentely, the small punch(SP) test method using miniaturized small specimen is the very effective test method for fracture strength evaluation of a localized region like weldment and fusion reactor wall irradiated in the nuclear power plant. This paper investigated the possibility of SCC susceptibility evaluation by the SP-SSRT method using the miniaturized small specimen. Therefore, we obtained the result that the SP-SSRT had the possibility for the evaluations of SCC susceptibility for shorter time to corrosive environment compare to Ten-SSRT which was conventional method.

A Study on Material Degradation Evaluation of 9Cr1MoVNb Steel by Micromechanics Test Method (미소역학 시험기법에 의한 9Cr1MoVNb강의 열화도 평가)

  • Baek, Seung-Se;Na, Sung-Hoon;Yoo, Hyun-Chul;Lee, Song-In;Ahn, Haeng-Gun;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.105-110
    • /
    • 2000
  • The Micromechanics test is new test method which uses comparatively smaller specimen than that required in conventional material tests. There are several methods, such as small-specimen creep test, the continuous indentation test, and small punch(SP) test. Among them, the small punch(SP) test method has been applied to many evaluation fields, such as a ductile-brittle transition temperature, stress corrosion cracking, hydrogen embrittlement, and fracture properties of advanced materials like FGM or MMC. In this study, the small punch(SP) test is performed to evaluate the mechanical properties at high/low temperature from $-196^{\circ}C$ to $650^{\circ}C$ and the material degradation for virgin and aged materials of 9Cr1MoVNb steel which has been recently developed. The ${\Delta}P/{\Delta}{\delta}$ parameter defined a slope in plastic membrane stretching region of SP load-displacement curve decreases according to the increase of specimen temperature, and that of aged materials is higher than the virgin material in all test temperatures. And the material degradation degrees of aged materials with $630^{\circ}C$ -500hrs and $630^{\circ}C$ -1000hrs are $36^{\circ}C$ and $38^{\circ}C$ respectively. These behaviors are good consistent with the results of hardness($H_v$) and maximum displacement(${\delta}_{max}$).

  • PDF

Evaluation of Fracture Toughness Using Small Punch Test for Aluminum 6061-T6 Type-3 Cylinder Liner (소형펀치시험법을 이용한 알루미늄 6061-T6 Type-3 용기 라이너의 파괴인성 평가)

  • Ma, Young-Wha;Lee, Seong-Hoon;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Type-3 cylinder liner has a limitation of machining the standard specimen for fracture toughness test because it has approximately 5 mm in thickness as well as a curvature. Hence, it needs to be employed a miniature specimen test technique to evaluate fracture toughness of the cylinder liner. In this study, small punch (SP) test method was employed to evaluate fracture toughness of the cylinder liner. Load-displacement curve result measured from the SP test showed that the liner material was failed during membrane stretching in the general SP load-displacement curve. Additionally, it was shown that liner material was isotropic although the amount of plastic deformation was different depending on the direction due to manufacturing process characteristics. Fracture toughness, $J_{Ic}$, was evaluated using the SP test data. The value of fracture toughness obtained was $13.0kJ/m^2$. This value was similar to that of the same kind of materials. Therefore, the fracture toughness evaluated using the SP test data was reasonable.

Evaluation of Cryogenic Fracture Characteristics on TIG Weldments of Superconducting Magnets Structural Steel by Small Punch Testing Method (소형펀치 시험법에 의한 초전도 마그넷 구조용강 TIG 용접부의 극저온 파괴특성 평가)

  • ;T. Hashida
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.122-133
    • /
    • 1996
  • In order to evaluate the cryogenic fracture characteristics of structural steels for superconducting magnets of fusion reactor, small punch (SP) testing was performed on austenitic stainless steel (JN1 base metal) and its TIG weldments at 293K, 77K and 4K. The mechanical properties with respect to the extracted location of the weld metal, on the effects of welding heat cycle about base metal near fusion line in TIG weldments were investigated. The mechanical property of the weld metal in TIG weldments depends on distance from welding root, root region of weldments having the lowest mechanical property. The base metal near fusion line showed degradation of mechanical property caused by cyclic heating during the TIG welding. Based on the test results, HAZ was found to be up to 5mm from the fusion line. It is shown that SP testing is a useful tool to evaluate the mechanical properties with respect to the microstructures changes such as HAZ as well as weld metal in TIG weldments at cryogenic temperature.

  • PDF

Assessment of Strength Characteristics of Al 2024 ECAP Metal Using Small Punch Testing (소형펀치 시험법을 이용한 Al 2024 ECAP 재료의 강도특성 평가)

  • Ma Young Wha;Choi Jeong Woo;Kim Seon Hwa;Yoon Kee Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.8-17
    • /
    • 2006
  • When subjected to severe shear deformation by ECAP, microstructure of Al2024 becomes extremely refined. To measure the strength of that, small punch(SP) testing method was adopted as a substitute for the conventional uniaxial tensile testing because the size of material processed by ECAP were limited to ${\psi}12\;mm$ in transverse direction. SP tests were performed with specimens in longitudinal and transverse directions of Al2024 ECAP metal. For comparing the strength values with those assessed by SP tests, uniaxial tensile tests were also conducted with specimens in longitudinal direction. Failure surfaces of the tested SP specimens showed that failure mode was shear deformation and Al 2024 ECAP metal has an anisotropy in strength. Thus, conventional equations proposed for assessing the strength characteristics were improper to assess those of Al2024 ECAP metal. In this paper a way of assessing the strength of Al 2024 ECAP metal was proposed and was proven to be effective.

A Study of Non-destructive Indentation and Small Punch Tests for Monitoring Materials Reliability (소재의 안전전단을 위한 비파괴 압입 및 소형펀치 시험법 연구)

  • Ok Myoung-Ryul;Ju Jang-Bog;Lee Jeong-Hwan;Ahn Jeong-Hoon;Nahm Seung Hoon;Lee Hae-Moo;Kwon Dongil
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.78-85
    • /
    • 1997
  • Indentation and small punch tests are very powerful methods to monitor the materials reliability since they are very simple, easy and almost non-destructive. First, recently-developed continuous indentation test can provide the more material properties such as hardness, elastic modulus, yield strength, work-hardening exponent, etc., than the conventional hardness test. In our study, the true stress-strain curve was derived from the indentation load-depth curve for spherical indentation. In detail, the strain was able to be obtained from plastic depth/contact radius ratio, and the flow stress was from mean contact pressure through the analysis of elastic-plastic indentation stress field. Secondly, the small punch test was studied to evaluate the fracture toughness and defomation properties such as elastic modulus and yield strength. Like the indentation test, this test can be applied without severe damage of the target structure.

  • PDF

A Study on Small Punch-Creep Test Using Finite Element Analysis II (유한요소해석을 이용한 소형펀치-크리프 시험에 관한 연구 (II) - SP-Creep 시험과 일축 크리프 시험의 상관성을 중심으로 -)

  • Lee, Song-In;Kwon, Il-Hyun;Kim, Yon-Jig;Ahn, Byung-Guk;Ahn, Haeng-Keun;Baek, Seung-Se;Yu, Hyo-Sun
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.111-116
    • /
    • 2001
  • Small punch-creep(SP-Creep) test technique has been applied for evaluating the creep characteristics for high temperature materials. However, in order to evaluate the damage and predict the remaining life, it is necessary to establish a quantitative correlation between SP-Creep and uniaxial-creep test results. This paper presents analytical and experimental results of useful correlation between SP-Creep and uniaxial-creep properties for 9Cr1MoVNb steel at $600{\sim}650^{\circ}C$ in terms of stress(load) and activation energy during creep deformation. Especially, the activation energy obtained from SP-Creep test is linearly related to that from uniaxial-creep test at $650^{\circ}C$ as follows: $Q_{sp-p}{\fallingdotseq}1.37\;Q_{TEN},\;Q_{sp-{\sigma}}{\fallingdotseq}1.53\;Q_{TEN}$.

  • PDF

소형 펀치 시험에 의한 강용접부의 파괴강도 평가에 관한 연구 1

  • 유대영;정세희;임재규
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.28-35
    • /
    • 1989
  • It was reported that the toughness for welded region was influenced by various factors such as the gradient for prior austenite grain size, the variation of microhardness and the characteristic microstructure depending on distance from the fusion boundary. Therefore, in order to evaluate the fracture strength of the weldment in which the microstructures change continuously, it is important to assess the peculiar strength of each microstructure in welded region. It was known that the small punch(SP) test technique which was originally developed to study the irradiation damage effect for the structures of nuclear power plant was also useful to investigate the strength evaluating of nonhomogeneous materials. In this paper, by means of a small punch test technique the possibility of evaluating strength of parent and welded region in SS41 and SM53B steels was investigated. The obtained results are summerized as follows: 1) The small punch test which showed markedly the ductile-brittle transition behavior in this experiment may be applied to evaluation for the fracture strength of welded region. 2) It was shown that the ductile-brittle regime lied in Region III(plastic membrane stretching region) of the flow characteristics observed in SP test. 3) The SP test technique which shows a more precipitous energy change transition behavior than the other test technique is able to estimate the more precise transition temperature. 4) It could be seen that in comparision with the structure of parent the structure of weld HAZ in SS41 steel was improved while it in SM53B steel was deteriorated.

  • PDF

Small Punch Creep Evaluation and Microstructure Analysis in Aged P122 Steel (P122강 열화재의 소형펀치 크리프 평가 및 미세조직 분석)

  • Kim, Bum-Joon;Kim, Moon-K;Dung, Hoang Tien;Lim, Byeong-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • This paper investigates the influence of aging time on creep properties via a small punch creep test and evaluates the microstructural change of P122 steel at $600^{\circ}C$. The area fraction of precipitates was quantitatively analyzed to identify the relationship between the creep rupture life and precipitates was coarsening behavior of precipitates along the grain boundaries was also investigated for various aging times. It is found that this coarsening behavior led to a loss of solution hardening and rewulte in a hardness drop and a reduction of creep life.

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test II : Weld Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 II : 용접부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • With weld metal of X65 steel, hydrogen was charged by electro-chemical method and mechanical behavior such as strength was measured by the small punch test. The weld metal was more sensitive to hydrogen charging than the case of base metal. The small punch (SP) strength was decreased as the hydrogen contents increased. Magnitude of strength decrease was dependent on current density, temperature, charging time. Current density and charging time have significant effect on the mechanical properties but temperature of electrolyte has limited effect. Fractured surfaces of the tested specimens were observed by SEM (scanning electron microscope). In the hydrogen charged specimens cleavage fracture were observed, which is consistent with the SP test results. Since the testing procedure for studying hydrogen embrittlement proposed in this study has shown good reproducibility of test results, the proposed method can be assumed to be a reliable test procedure. Using the electrochemical charging and the small punch test, the change of SP strength for X65 weld metal due to hydrogen embritlement could be evaluated sensitively.