• Title/Summary/Keyword: Small Hydro-Power

Search Result 175, Processing Time 0.026 seconds

Effect of Nozzle Shape on the Performance and Internal Flow of a Cross-Flow Hydro Turbine (횡류수차 노즐형상이 성능과 내부유동에 미치는 영향)

  • Choi, Young-Do;Lim, Jae-Ik;Kim, You-Taek;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • The purpose of this study is to examine the effect of nozzle shape on the performance and internal flow of a cross-flow hydro turbine. CFD analysis for three kinds of nozzle shape is conducted to simulate the effect of nozzle shape. The results reveal that relatively narrow nozzle width is effective to increase the turbine efficiency and output power. Almost output power is achieved at Stage 1. Therefore, optimum design of the nozzle shape is necessary to improve the turbine performance. Recirculation flow in the runner passage decreases the turbine efficiency and output power because the flow make hydraulic loss and collision loss in the region. Air should be put into the runner passage and the recirculating flow should be suppressed by the air layer in the runner.

Hydraulic Performance Analysis of Francis Type Turbine (프란시스수차의 수력학적 성능특성 분석)

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.664-667
    • /
    • 2009
  • The Francis type hydro turbine with vertical axis has been designed and analized for hydraulic performance verification. The guide vane angle of turbine casing were designed to be varied according to the condition of head and flowrate. When the changes in flowrate and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed hydro turbine in this study will be suitable for small hydro power stations with medium and high head such as agricultural reservoirs and large dam.

  • PDF

Hydraulic Performance Characteristics of Vertical-Axis Propeller Turbine Model (일체형 입축 프로펠러수차 모형의 수력학적 성능특성)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.379-382
    • /
    • 2008
  • The propeller type hydro turbine model with vertical axis has been tested and analized. The blade angle of runner of turbine model were designed to be varied according to the condition of head and flowrate. When the changes in head and output were comparatively large, the efficiency drop were small, so the efficiency characteristics and stability of the entire operating condition were maintained in good condition. These results showed that the developed model in this study will be suitable for small hydro power stations with large changes in head and load such as sewage treatment plants and agricultural reservoirs.

  • PDF

An Analysis of Power System Stability(PSS) Effect with 135MVA Hydro Generator (135MVA 수력 발전기의 전력 시스템 안정화 장치 적용 효과 분석)

  • Ok, Yeon-Ho;Lee, Eun-Woong;Byun, Ill-Hwan;Oh, Sueg-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1100-1104
    • /
    • 2009
  • As national power consumption every year increases, the power plant which is in the process of planning tries to establish high-capacity generator. The power system tends to become a large size. With the progress of electronic components, the control systems of the generator have been digitalized and rapid-response control system is possible. However, the minute frequency vibration of grid occurred with the effect of rapid-response control system. To solve these problem, PPS(Power System Stability) has been introduced since 2004, and it has being installed and applied to the thermal and nuclear power plant which are high-capacity, over 800MVA. However the minute frequency vibration is gradually changed to the bigger frequency vibration by fast-action control system, and this regional frequency fluctuation might be diffused wide area. Therefore, it is applied to the hydro generator which is small with fast-action governor system, and it is necessary to control the minute frequency vibration to prevent to diffuse. In this paper, the effect will be proved by establishing PSS on the Hydro-Generator which has both digital excitation and governor system for the first time in Korea.

Characteristics of Small Hydro Power Resources for River System (수계별 소수력자원의 특성)

  • Park, Wansoon;Lee, Chulhyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.1-193.1
    • /
    • 2010
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong dam. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

Characteristic Analysis of Small Hydro Power Resources for River System (수계별 소수력자원의 특성 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.235-240
    • /
    • 2011
  • Small hydropower resources for five major river systems have been studied. The model, which can predict flow duration characteristic of stream, was developed to analyze the variation of inflow caused from rainfall condition. And another model to predict hydrologic performance for small hydropower(SHP) plants is established. Monthly inflow data measured at Andong dam were analyzed. The predicted results from the developed models in this study showed that the data were in good agreement with measured results of long term inflow at Andong darn. It was found that the models developed in this study can be used to predict the available potential and technical potential of SHP sites effectively. Based on the models developed in this study, the hydrologic performance for small hydropower sites located in river systems have been analyzed. The results show that the hydrologic performance characteristics of SHP sites have some difference between the river systems. Especially, the specific design flowrate and specific output of SHP sites located on North Han river and Nakdong river systems have large difference compared with other river systems.

  • PDF

A Study on the Optimum Design Flowrate for Tunnel-Type Small Hydro Power Plants

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.81-96
    • /
    • 1992
  • This study represents the methodology for feasibility analysis of small hydro power SHP plant. Cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP candidate site. The perfomance prediction model and construction cost estimation model for tunnel-type SHP plant were developed. Eight tunnel -type SHP candidate sites existing on Han-river were selected and surveyed for actual site reconnaissance. The performance characteristics and economical feasibility for these sites were analyzed by using developed models. As a result, it was found that the optimum design flowrate with the lowest unit generation cost for tunel-type SHP candidate site were the flowrate concerming with between 20% and 30% of time ratio on the flow duration curve. Additionally, primary design specifications such as design flowrate, effective head, capacity, annual averageload factor, annual electricity production were estimated and discussed for eight surveyed SHP candidate sites.

  • PDF

Optimized Sealing Profile Design of Mechanical Face Seals for a Hydro-power Turbine (소수력 터빈용 기계평면시일의 최적형상설계에 관한 연구)

  • Kim, Chung-Kyun;Kim, Jung-Il;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.499-502
    • /
    • 2006
  • This paper presents computed results of FEM analysis on the tribological contact behaviors of a primary sealing components of mechanical face seals for a small hydro-power turbine. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary seal ing components. Based on the FEM computation, model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a 1)seal seat.

  • PDF

Developed Low-priced 3kW Small Hydro Power Generation System using Composite Material (복합소재를 이용한 저가형 3kW 소수력 발전시스템 개발)

  • So, Byung Moon;Kim, Sung Hee;Han, Woo Yong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.84-87
    • /
    • 2018
  • As the propeller end speed increases, the propeller surface is damaged in the process of bubble formation and dropout. It is intended to prevent the corrosion of the propeller by modifying the shape of the end through the winglet structure to mitigate the cavitation phenomenon. In the case of conventional SUS materials, the cost of production is so high that plastic materials are used to prevent corrosion. This paper aims to mitigate the cavitation by deforming the shape of the end through the winglet structure by using the SMC composite material of the propeller using the existing SUS.

A study on economic analysis of new renewable energy power(photovoltaic, wind power, small hydro, biogas) (신재생에너지 발전(태양광, 풍력, 소수력, 바이오가스)의 경제성 분석 연구)

  • Kim, Chong-Min;Kim, Ki-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.70-77
    • /
    • 2008
  • The purpose of this study evaluates a feasibility and economical efficiency of new renewable energy. According as weather change is serious problem now days, every people make attention to the reduction of greenhouse gas. The revitalization of new renewable energy creates the variety of energy source, stability of energy supply and reduction of greenhouse gas. In this study evaluates a feasibility and economical efficiency from new renewable energy of various photo voltaics, wind power, small hydro and biogas. Feasibility does in standard of technical characteristic, politic support, marketability, establishment present condition and development aim. Economical efficiency does in standard of developmental unit cost, utilization factor, equipment life, politic support cost, interest ratio. The results of this study were as follows photo voltaics, wind, small hydropower, biogas in order feasibility is high. Developmental unit cost, utilization factor, equipment life, politic support cost and analyzed the relationship of interest ratio fluctuation and economical efficiency. From all new renewable energy the utilization factor most is important in economical efficiency but necessary utilization factor is difficult because environmental problem.