• Title/Summary/Keyword: Small Fishing Vessels

Search Result 112, Processing Time 0.022 seconds

Increased Utilization of LTE-Maritime Networks Based on User Requirements (사용자 요구사항 기반 초고속 해상무선통신망 활용성 증대 방안에 대한 연구)

  • Sangjin JANG;Bu-Young KIM;Si-Hwan LEE;Hyo-Jeong KIM;Taehan SONG;Woo-Seong Shim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.812-818
    • /
    • 2023
  • During the years 2016 to 2020, the Ministry of Oceans and Fisheries embarked on a strategic initiative to develop a comprehensive Korean e-navigation system, which encompassed the establishment of an 'Long Term Evolution for Maritime (LTE-M).' The primary objectives were to proactively align with international navigation standards and enhance maritime safety for small vessels, particularly fishing boats. However, limitations were identified in the utilization of this network, primarily its constrained application for specific purposes. In response to these limitations, this study delves into user-centric investigations through surveys and interviews, with the goal of expanding the horizon of network utilization. User requirements emerged as the result of study, emphasizing the need for broader network applications, a wider range of target users, diverse network utilization methods, and regulatory streamlining. The user-driven insights gleaned from this study hold the potential to inform and shape future legislative measures, fostering more versatile and inclusive LTE-M network utilization for enhanced maritime safety.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Suppression of Radar Clutter by CFAR - (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 - CFAR에 의한 레이더 잡음 억제 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.347-357
    • /
    • 2003
  • This paper describes on the suppression of sea clutter on marine radar display using a cell-averaging CFAR(constant false alarm rate) technique, and on the analysis of radar echo signal data in relation to the estimation of ARPA functions and the detection of the shadow effect in clutter returns. The echo signal was measured using a X -band radar, that is located on the Pukyong National University, with a horizontal beamwidth of $$3.9^{\circ}$$, a vertical beamwidth of $20^{\circ}$, pulsewidth of $0.8 {\mu}s$ and a transmitted peak power of 4 ㎾ The suppression performance of sea clutter was investigated for the probability of false alarm between $l0-^0.25;and; 10^-1.0$. Also the performance of cell averaging CFAR was compared with that of ideal fixed threshold. The motion vectors and trajectory of ships was extracted and the shadow effect in clutter returns was analyzed. The results obtained are summarized as follows;1. The ARPA plotting results and motion vectors for acquired targets extracted by analyzing the echo signal data were displayed on the PC based radar system and the continuous trajectory of ships was tracked in real time. 2. To suppress the sea clutter under noisy environment, a cell averaging CFAR processor having total CFAR window of 47 samples(20+20 reference cells, 3+3 guard cells and the cell under test) was designed. On a particular data set acquired at Suyong Man, Busan, Korea, when the probability of false alarm applied to the designed cell averaging CFAR processor was 10$^{-0}$.75/ the suppression performance of radar clutter was significantly improved. The results obtained suggest that the designed cell averaging CFAR processor was very effective in uniform clutter environments. 3. It is concluded that the cell averaging CF AR may be able to give a considerable improvement in suppression performance of uniform sea clutter compared to the ideal fixed threshold. 4. The effective height of target, that was estimated by analyzing the shadow effect in clutter returns for a number of range bins behind the target as seen from the radar antenna, was approximately 1.2 m and the information for this height can be used to extract the shape parameter of tracked target..