• Title/Summary/Keyword: Small Constructed Wetland

Search Result 29, Processing Time 0.025 seconds

Preliminary Phosphorous Removal Rate in a Natural-type Constructed Wetland for Stream Water Treatment (하천수정화 근자연형 인공습지의 초기 인 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.30-36
    • /
    • 2002
  • A 0.19 hectare natural-type wetland for stream water treatment demonstration was constructed and planted with cattails from April 2001 to May 2001. Part of its bottom surfaces adjacent to levees have a variety of slope of 1 : 4~1 : 15. Two small open water areas were installed, in which emergent plants could not grow. Removal of nutrients from stream waters was a major objective of the wetland. Waters of Sinyang Stream flowing into Kohung Estuarine Lake were pumped and funneled into the wetland. The lake had been formed by a salt marsh reclamation project and was located southern coastal region of Korean Peninsula. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged $120.4m^3/day$ and $112.1m^3/day$, respectively. Hydraulic retention time was about 3.1 days. Average total phosphorous concentration of influent and effluent was $0.19mg/{\ell}$ and $0.075mg/{\ell}$, respectively. Total phosphorous loading rate of inflow and outflow averaged $12.05mg\;m^{-2}\;day^{-1}$ and $4.44mg\;m^{-2}\;day^{-1}$, respectively. Average total phosphorous removal rate in the wetland was $7.61mg\;m^{-2}\;day^{-1}$. Seasonal changes of phosphorous retention rates were observed. The wetland acted as effective phosphorous sinks in the initial stage of the constructed wetland.

A Faunal Study in the Shihwa Constructed Wetland (시화호 인공습지 동물상 조사연구)

  • Lee, Woo-Shin;Woo, Kun-Suk;Shim, Jae-Han;Hur, Wee-Haeng;Choe, Hyun-Jung;Lee, Sang-Chul;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.93-105
    • /
    • 2004
  • The Shihwa wetland, a newly developed constructed wetland prototype in Korea with an area of approximately 104 ha, was established to improve the water quality severely polluted inflow streams into Lake Shihwa. Because this wetland could play a role as an ecological park in addition to improving the water quality, an ecological impact of the Shihwa constructed wetland has been a national concern. This paper focused on reporting the survey results for fauna among the entire investigation results for 3 years. A total of 129 terrestrial insect species have been observed from August 2001 to June 2002. Among them, Ischnura asiatica (Brauer) (order Odonata), Scymnus species (order Coleoptera) and Orthopteran species were frequently found in the reed bushes. A total of 77 bird species were recorded in a seasonal count, the maximum number of species was 34 in winter and the maximum number of individuals was 4,599 in summer. For the freshwater fish, only 4 species were found in 2000, however in 2001 and 2002, 12 species and 459 individuals were collected at four survey points. Among these 12 species, the dominant species were Mugil cephalus(36%), followed by Carassius auratus (25%) and Rhinogobius brunneus (22%). Meanwhile,12 individuals of Oryzias latipes were observed nearby, mostly downstream of the wetland. For the Herpetofauna at four survey areas, 3 species of amphibians and 3 species of reptiles were recorded. Because of remaining salinity in the soil of the Shiwha constructed wetland, Herpetofauna inflow to the wetland was scanty and mainly inhabited the upstream area. A total of 8 mammal species were recorded. Small-sized species were the striped field mouse, the Ussurian harvest-mouse, the Manchurian reed vole and the brown rat. Middle- and large-sized species were Korean water-deer, Korean raccoon dogs, Korean yellow weasels and feral cats.

Development of Small HSSF Constructed Wetland for Urban Green space (도시내 녹지공간 조성을 위한 소규모 HSSF 인공습지 개발)

  • Lee, Jeong-Young;Kang, Chang-Guk;Gorme, Joan B.;Kim, Soon-Seok;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 2011
  • Scarcity of water worldwide, increasing greenhouse gas emissions, increased energy consumption due to the Earth is threatened. Existing in the process of urban planning and development of forests, rivers and other natural ecosystems have been destroyed and that there was increased impervious pavement. Impervious pavement increase water circulation system to destroy the natural and urban water retention, infiltration and decreased evaporation. Nonpoint source pollution(NPS) occurs when rainfall impervious pavement and appeal directly to the river water inflow is adversely impacts of the situation. In this study, rainfall occurs impervious pavement NPS pollution reduction and temperature increase due to the increase in urban areas, and to solve heat island phenomenon is to develop small HSSF constructed wetland technology. The small HSSF constructed wetland sedimentation, filtration, adsorption, absorption by vegetation, including such mechanisms. Techniques for verification of the pilot-scale test was conducted. In the future domestic urban heat island phenomenon and restore the natural water cycle for the facilities will be used as a basis to develop.

Sewage Treatment Using Natural Systems and Effluent Reuse for Crop Irrigation in Small Communities

  • Ham, Jong-Hwa;Yoon, Chun-G.;Jeon, Ji-Hong;Hwang, Ha-Sun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.70-82
    • /
    • 2003
  • A pilot study was performed from July 1998 to December 2002, including winter performance, to examine seasonal performance of a constructed wetland and subsequent pond system for treatment of sewage in small communities of Korea. Pond was operated as a intermittent-discharge pond during winter period, and continuous flow system during growing season; its effects was evaluated from December 2001 to April 2003. The subsurface flow (SSF) wetland was satisfactory for treating sewage with good removal efficiency even during the winter period. The wetland effluent concentrations of $BOD_5$ and TSS were often higher in winter than in the growing season, but this was explained by the higher loading rates, rather than lower removal efficiency. The relatively poor-quality wetland effluent was further polished during winter in the pond. The upper layer of the pond water column became remarkably clear immediately after ice melt. In the growing season, ponds could be operated as a continuous flow system to remove nutrients and pathogens, and the effluent of pond could be reused as a supplemental irrigation water without risk of infection by sewage-borne pathogens as well as causing adverse effect on growth and yield. Overall, the wetland system was found to be adequate for treating sewage with stable removal efficiency, and the intermittent-discharge pond was found to be effective for further polishing if necessary. Therefore, the combination of a wetland and subsequent pond system and reuse of effluent as crop irrigation water is recommended as a practical alternative to treat sewage in Korean small communities, and partial discharge of pond water in March is suggested.

Performance of Shi-hwa Constructed Wetland for the treatment of severely polluted stream water (시화호 인공습지를 이용한 오염된 하천의 수질 정화)

  • Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.615-618
    • /
    • 2003
  • A prototype of 76 ha Shi-hwa constructed wetland was constructed for the first time in Korea to purify severely polluted stream water. Hydrology, vegetation(macrophyte) and water quality for Banwol and Donghwa wetland built in Shi-hwa tidal reclaimed area were monitored to evaluate the performance of the wetlands. The overall efficiency for the treatment of polluted stream water using the wetlands showed no significant improvement. The monthly average removal rates on SS, BOD, TN and TP for Banwol and Donghwa wetlands showed 66.5% and 62.8%, 14.8 and 34.3%, 33.9 and 47.1% and 20.8 and 51.6%, respectively. It is considered that three major factors, ie. wide fluctuations in inflow rate, short hydraulic retention time and small open area compared with vegetated area could have a great influence on low system efficiency.

  • PDF

Evaluation of urban pollutant washoff characteristics and treatment efficiency of a small constructed wetland

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.412-412
    • /
    • 2019
  • Nature-based solutions (NBS) offer a wide variety of techniques that promote cost-efficient stormwater management practices. In particular, low impact development facilities utilize NBS principles to restore the ecosystem services in a highly-urbanized area. Despite the advancements in these technologies, several considerations should still be addressed to ensure optimum functionality and attainment of desired pollutant removal efficiency a LID facility. This study evaluated the mass flushing characteristics of pollutants in an urban catchment and the efficiency of a small constructed wetland (SCW) in treating urban stormwater runoff. 21 rainfall events from 2010 to 2018 were monitored to determine and quantify stormwater pollutants. The highest pollutant washoff was observed on rainfall depths ranging from 0.1mm to 10mm, whereas events with greater rainfall depths exhibited lower pollutant concentrations due to dilution effect. However, the SCW manifested lower pollutant-removal performance on rainfall depths exceeding 10mm due to the exceedance of the facility's design rainfall. This study is beneficial in assessing the dynamics of pollutant washoff and efficiency of LID facilities subjected under various external factors.

  • PDF

Nutrients Removal Efficiency by Vegetation Density on Constructed Wetland from Small Watershed (소수계 유역 인공습지에서 식생 밀도 차이에 다른 영양염류 제거효율)

  • Ko, Jee-Yeon;Kang, Hang-Won;Lee, Jae-Sang;Kim, Chun-Song;Sakadevan, K.;Bavor, H.J.
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.266-272
    • /
    • 2003
  • This study was conducted to evaluate effects of 2 constructed wetlands with different vegetation states (plumpton park wetland and Woodcroft park wetland) for reducing non-point source pollution from small watershed consisted of residential and agricultural area in suburban district of Sydney, Australia. The total nitrogen and phosphate removal efficiency of Plumpton park constructed wetland, composed of stable and dense vegetation, were 38.3% and 26.2% and Woodcroft park constructed wetland having still poor vegetation due to the short time to settle down transplanted plants after construction, showed relatively low removal efficiency of 20.2% and 14.0%. The removal efficiency of inorganic nutrients such as $NH_4-N$, $NO_3-N$, $PO_4^{-3}$ were higher than total nitrogen and phosphate because plants and microorganisms in rhizosphere of constructed wetlands took up inorganic nutrients shortly. According to the type of wetland inflow, the nutrients removal efficiency of storm water flow was lower than base flow.

Pond System for Further Polishing of Constructed Wetland Effluent during Winter Season (연못을 이용한 동절기 인공습지 오수처리수의 추가 처리)

  • Yoon, Chun-Gyeong;Jeon, Ji-Hong;Kim, Min-Hee;Ham, Jong-Hwa
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.139-148
    • /
    • 2002
  • Pilot study was performed to examine the feasibility of the pond system for further polishing of treatment wetland effluent from December 2000 to June 2001. The wetland system used for the experiment was highly effective to treat the sewage during the growing season, but it was less effective and its effluent was still high to discharge to the receiving water body. Therefore, the wetland effluent may need further treatment to prevent water quality degradation. Pond system could be used to hold and further polish the wetland effluent during the winter season and ots feasibility was evaluated in this study. Additional water quality improvement was apparent in the pond system during winter season, and the pond effluent could be good enough to meet the effluent water quality standards if it is properly managed. Timing of the pond effluent discharge appears to be critical for pond system management because it is a closed system and whole water quality constituents are affected by physical, chemical, and biological pond environments. Once algae started to grow in mid-April, constituents in the pond water column interact each other actively and its control becomes more complicated. Therefore, upper layer of the pond water column which is clearer than the lower layer my need be discharged in March right after ice cover melted. In the experiment, water quality of the upper water column was markedly clear in March than ant other times probably because of freezing-thawing effect. The remaining lower water column could be further treated by natural purification as temperature goes up or diluted with better quality of wetland effluent for appropriate water uses. This study demonstrated the feasibility of pond system for subsequent management of wetland effluent during the winter season, however, more study is needed for field application.

Investigation on Design Aspects of the Constructed Wetlands for Agricultural Reservoirs Treatment in Korea (농업용 저수지 수질개선을 위한 국내 인공습지 설계 및 시공실태 조사)

  • Kim, Youngchul;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.189-200
    • /
    • 2021
  • To improve the water quality of agricultural reservoirs, constructed wetlands are applied in many places. These are technologies that establish ecosystems and important design factors include water depth distribution, inflow and outflow, water flow distribution, hydraulic residence time, water quality treatment efficiency, aspect ratio, and the distribution of open water and covered water surfaces. For high efficiency during the operation of a constructed wetland, the design needs to be optimized and this requires consideration of the different types and length of the intake dam as well as the type and connection of wetland cells. Therefore, this study was conducted to investigate and suggest factors that needs to be considered during the design and for efficient operation measures through field surveys of 23 constructed wetlands that have been established and operated in agricultural reservoirs. Results of the field investigation shows that several sites were being operated improperly due to the malfunctioning or failure of the water level sensors, sedimentation in the intake dam, and clogging of the mechanical sluice frames. In addition, it was found that as the length of the inlet channel increases, the ecological disconnection between the intake dam upstream and the wetland outlet downstream also increases and was identified as a problem. Most of the wetlands are composed of 2 to 5 cells which can result to poor hydraulic efficiency and difficulty in management if they are too large. Moreover, it was found that the flow through a small wetland can be inadequate when there are too many cells due to excessive amounts of headloss.

Test-bed evaluation of developed small constructed wetland for using in urban areas (도시지역에 적용하기 위한 소규모 인공습지 Test-bed 시설 평가)

  • Kang, Chang-Guk;Lee, So-Young;Cho, Hye-Jin;Lee, Yuw-Ha;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.455-463
    • /
    • 2011
  • Conventional construction technologies have been continually applied without consideration of its impact to the environment. This resulted to various problems including the negative responses of local citizens that regarded some constructed facilities as aversive facilities causing environmental and hydraulic problems in the urban area, etc. To prevent these problems, therefore, alternative methods should be undertaken. A new approach termed "Low Impact Development (LID)" technology is currently adapted in developed countries around the world. This study aims to investigate the efficiency of the developed small constructed wetland (SCW) with horizontal subsurface flow as a LID technique applicable in urban areas. Two test-bed facilities were constructed and monitoring had been conducted between July 2010 and June 2011. Based on the findings, the removal efficiencies achieved for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb for the SCW-1 were 66, 53, 46, 55, 67 and 50%, respectively. On the other hand, the SCW-2 attained 82, 62, 51, 48, 74 and 42% efficiency for TSS, $COD_{Cr}$, TN, TP, Total Fe, Total Pb, respectively. The results indicated that the removal of particulate matter and heavy metals which are considered as main pollutants from stormwater runoff in urban areas was satisfactory in the system. Therefore, the test-beds proved to be appropriate for the treatment of pollutants in urban landuses such as road, parking lot, etc. The results of this study can contribute to the conservation of aquatic ecosystems and restoration of natural water cycle in the urban areas.