• Title/Summary/Keyword: Small Aperture

Search Result 240, Processing Time 0.021 seconds

Equivalent Circuit Analysis of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 갖는 도파관 탐침의 등가회로 해석)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1300-1305
    • /
    • 2014
  • Equivalent circuits for the waveguide probe with H-shaped small aperture, as a key ingredient of near field microwave microscope, is described along with a working principle of the probe. Small rectangular or circular aperture in comparison with the wavelength behaves like the inductive element. So adding the ridged structure (corresponding to capacitive component) to the small aperture allows the transmission resonance to occur. For verification, we represents the equivalent circuit descriptions for the two types, ridged aperture and cavity types. The values of obtained by use of the equivalent circuit approaches are compared with those obtained by use of the available numerical software. The results are also experimentally verified.

Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane (도체 평판에서 소형 개구의 투과 단면적)

  • Ko, Ji-Hwan;Park, Soon-Woo;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.300-306
    • /
    • 2019
  • Transmission cross section(TCS) is described analytically as $2G{\lambda}^2/4{\pi}$ irrespective of the aperture shapes for various transmission resonant apertures, such as small ridged circular or H-shaped, U-shaped, or Jerusalem cross-shaped apertures in an infinite thin conducting plane. The proposed expression is validated by comparison with the numerical results obtained from the method of moments(MOM). The TCS characteristics of the transmission resonant cavity structure in a thick conducting plane are also studied and the equivalence between the two small aperture structures is reported from the viewpoint of transmission efficiency.

A Study on the Resonant Transmission through a Ridge-Loaded Small Circular Aperture (리지가 장하된 소형 원형 개구의 공진 투과에 관한 연구)

  • Ko, Ji-Hwan;Cho, Young-Ki;Yeo, Jun-Ho;Lee, Jong-Ig
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.654-660
    • /
    • 2011
  • In this paper, the electromagnetic wave transmission through a ridge-loaded small circular aperture is considered. The transmission problem when a plane wave is normally incident on the aperture in an infinite conducting plane is solved by a method of moments(MoM). From the results for the transmitted power and the patterns of radiation from the aperture, the transmission characteristics of a small sub-wavelength circular aperture, a ridge-loaded circular aperture, and a half wavelength slot are compared. In addition, the theoretical study is verified through the experiments for the apertures fabricated on an Flexible Printed Circuit Board(FPCB), which shows fairly good agreements with the simulated results.

Aero-Optical Diagnostic Technique for the Hypersonic Boundary Layer Transition on a Flat Plate

  • Li, Ruiqu;Gong, Jian;Bi, Zhixian;Ma, Handong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.6-9
    • /
    • 2015
  • A new cross disciplinary conception of transitional aero-optics is built up during analyzing and measuring the linkage between the hypersonic boundary layer transition on a flat plate and the jittering characteristics of the small-aperture beam through that boundary layer. Based on that conception, the Small-Aperture Beam Technique (SABT) and high-speed Imaging Camera System (ICS) used in aero-optical studies are considered as new techniques for the assessment of the hypersonic transition in the boundary layer on a flat plate. In the FD-20 gun tunnel, for the free stream parameters with Mach number of 8 and unit Reynolds number of $1{\times}10^7$ (1/m), those two optical techniques are used to measure the jitter of the small-aperture beam. At the same free stream parameters, the distribution of the heat transfer along the centerline of the flat plate is also measured by the thin film resistance gauge technique. The results show the similarity of the increase trend between the heat transfer and the jitter of the small-aperture beam in the transitional region. It helps us to surmise that it may be feasible to diagnose the transition in a hypersonic boundary layer on a flat plate by means of those above optical techniques.

Resonant Transmission of a Rectangular Waveguide Probe with H-type Small Aperture (H-형태 소형 개구를 가진 직사각형 도파관 탐침의 공진 투과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1198-1204
    • /
    • 2013
  • As a microwave near field probe for near field scanning optical microscope(NSOM) system, H-shaped(ridge type) small aperture is proposed and its performances from the viewpoints of the transmission efficiency(transmission cross section) and spatial confinement(beam spot size) are compared with those of the previous narrow rectangular aperture type. While the transmission efficiencies are comparable to each other for the two structures, the transmitted beam spot size for the proposed H-shaped aperture is much smaller than that for the previous rectangular aperture. This strong point of the H-shaped aperture is expected to significantly improve near-field optical applications such as optical data storage, nanolithography and nanomicroscopy. It is also observed that the transmission efficiency can be improved if the coupling aperture is implemented in the type of the transmission cavity.

A study on the Near-field diffraction using taper wave guide (테이퍼 광 가이드를 이용한 근거리 회절에 관한 연구)

  • Kim, Ki-Hyun;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.362-364
    • /
    • 1993
  • The properties of near-field diffraction by small aperture are investagated and using of optical fiber taper as a small aperture are proposed. Near-field diffracted by aperture smaller than one wave length can overcome the resolution of conventional microscopy and optical component. In this paper production methods of sub-wave length optical fiber taper using solenoid are also proposed.

  • PDF

Design of a High-Transmission C-Shaped Nano-Aperture in a Perfectly Electric Conductor Film (완전도체 박막에서 고 투과율 C형 나노 개구 설계)

  • Park Sin-Jeung;Hahn Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.160-165
    • /
    • 2006
  • We have designed a high-transmission nano aperture in a perfect electric conductor film with the incident beam of 532 nm wavelength. The aperture basically has a C-shape and is known to produce a bright spot nearby the aperture in small size less than diffraction limit. The bright spot is strongly coupled with the local plasmon excited through the aperture hole. The characteristics of transmission and peak power of the aperture output were calculated using finite differential time domain (FDTD) technique, and the geometry of the aperture was determined to get a maximum transmission and peak power. To find the effect of the surface plasmon induced near by the aperture, we calculated the variations of the transmittance and the beam sizes by changing the size of the input beam irradiated on the aperture.

Small Particle Detection System by Optical Scattering Effect (광 산란특성을 이용한 미세입자 감지시스템)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.579-583
    • /
    • 2012
  • We have designed the small particle detection system. The scatteing effect of light was used to detect small particle. The fabricated system consisted of laser diode, lens, pin hole, and photo detector. The aperture, lens, and photo detector were optimized to improve the performance of detection system. The fabricated detection system detected the scattered light by small particle entering into detection system and its response time was fast.

Resonant Transmission through C-Shaped and H-Shaped Small Apertures and the Mutual Coupling Effect between Two C-Shaped Apertures (C-형태와 H-형태의 소형 개구에 의한 공진 투과 및 C-형태 개구 간의 상호 결합 효과)

  • Ko, Ji-Hwan;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.12
    • /
    • pp.1399-1405
    • /
    • 2012
  • Transmission cross section characteristics as a measure of transmission efficiency has been analyzed numerically for the H-shaped and C-shaped small apertures in the infinite conducting plane when illuminated by a plane wave. It has been found that C-shaped aperture has the larger transmission cross section than that of H-shaped aperture under the condition of the same perforated aperture area. Main attention has been focused on studying the mutual coupling effect between two C-shaped apertures on the transmission cross section characteristic. Parallel configuration which is composed of two C-shaped apertures arranged along the x-axis and collinear configuration which is composed of two C-shaped arrayed along the y-axis have been investigated from the viewpoint of enhanced transmission cross section characteristics.

The Bandwidth Enhancement of an Aperture Coupled Microstrip Patch Antenna Using Variation of an Aperture Width (개구면 폭 변화를 이용한 개구면 결합 마이크로스트립 패치 안테나의 대역폭 확장)

  • Kim, Jae-Hyun;Koo, Hwan-Mo;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.1
    • /
    • pp.48-58
    • /
    • 2015
  • The bandwidth enhancement of an aperture coupled microstrip patch antenna(ACMPA) with a high permittivity feed substrate suitable for the integration with MMIC is investigated using variation of an aperture width. As an aperture width increases, the 10 dB return loss bandwidth increases due to the increase of the mutual resonance region between a patch resonance and an aperture resonance. The bandwidth of an ACMPA with extended aperture width is increased up to 35.3 % from 20.8 % of the ACMPA with an aperture of a typical aspect ratio 10:1. The degradation of the radiation characteristics of an ACMPA due to the increase of an aperture width is very small.