• Title/Summary/Keyword: Slurry hydrodynamics

Search Result 4, Processing Time 0.024 seconds

Numerical Analysis of the Energy-Saving Tray Absorber of Flue-Gas Desulfurization Systems (배연탈황설비의 에너지 절약형 트레이 흡수탑에 대한 수치 해석적 연구)

  • Hwang, Jae-Min;Choi, Ssang-Suk;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.775-782
    • /
    • 2010
  • This study is performed to study the effect of the tray in the absorber of a flue-gas desulphurization (FGD) system by using a computational fluid dynamic (CFD) technique. Stagnant time of slurry and the pressure drop in the FGD absorber increase when a tray is used in the absorber. Stagnant time of slurry results in an increase in the desulfurization effect and a decrease in the power of the absorber recirculation pump; however, increased pressure drop requires more power of booster fan in the FGD system should be increased. The gas and slurry hydrodynamics inside the absorber is simulated using a commercial CFD code. The continuous gas phase has been modeled in an Eulerian framework, while the discrete liquid phase has been modeled by adopting a Lagrangian approach by tracking a large number of particles through the computational domain. It was observed that the power saved upon increasing the stagnant time of slurry was more than increased power with pressure drop.

Development, validation and implementation of multiple radioactive particle tracking technique

  • Mehul S. Vesvikar;Thaar M. Aljuwaya;Mahmoud M. Taha;Muthanna H. Al-Dahhan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.4213-4227
    • /
    • 2023
  • Computer Automated Radioactive Particle Tracking (CARPT) technique has been successfully utilized to measure the velocity profiles and mixing parameters in different multiphase flow systems where a single radioactive tracer is used to track the tagged phase. However, many industrial processes use a wide range of particles with different physical properties where solid particles could vary in size, shape and density. For application in such systems, the capability of current single tracer CARPT can be advanced to track more than one particle simultaneously. Tracking multiple particles will thus enable to track the motion of particles of different size shape and density, determine segregation of particles and probing particle interactions. In this work, a newly developed Multiple Radioactive Particle Tracking technique (M-RPT) used to track two different radioactive tracers is demonstrated. The M-RPT electronics was developed that can differentiate between gamma counts obtained from the different radioactive tracers on the basis of their gamma energy peak. The M-RPT technique was validated by tracking two stationary and moving particles (Sc-46 and Co-60) simultaneously. Finally, M-RPT was successfully implemented to track two phases, solid and liquid, simultaneously in three phase slurry bubble column reactors.

반 접촉 상태를 고려한 CMP 연마제거율 모델

  • 김기현;오수익;전병희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.239-239
    • /
    • 2004
  • 화학적 기계연마 공정(CMP)은 반도체 웨이퍼를 수 천$\AA$m/min의 MRR로 2$\mu\textrm{m}$ 이내의 W(Total Thickness Variable) 조건을 만족시키는 초정밀 광역 평탄화 기술이다. 일반적인 CMP 방법은 서로 다른 회전 중심을 갖고 동일한 방향으로 회전하는 웨이퍼와 다공성 패드 사이에 연마액인 슬러리를 넣어 연마하는 것이다. CMP 공정기술은 1990년 대 중반에 개발되었으나, 아직까지 연마 메커니즘이 완벽하게 밝혀지지 않았다. 따라서 장비를 최적화하기 위해 실험에 의존적일 수밖에 없으나, 이러한 방법은 막대한 자금과 노력뿐만 아니라 상당한 시간을 필요로 하기 때문에, 앞으로 가속될 연마대상 재료의 변화 및 다양한 속도에 발맞출 수 없다.(중략)

  • PDF