• Title/Summary/Keyword: Slug/bail test

Search Result 2, Processing Time 0.012 seconds

The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils (모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Chung, Sang-Yong;Yang, Sung-Il;Lee, Min-Hee
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Slug/bail tests were conducted in sand layer (sbt-1 well), silty sand layer (sbt-2 well), and mixed sand and silty sand layer (sbt-3 well). Hydraulic conductivity and specific storage coefficient were estimated through slug/bail tests. Pore volumes of groundwater level drawdown zone for bail test were estimated by using hydraulic conductivity and specific storage coefficient. KGS model was most suitable interpretation method of slug/bail tests. Average hydraulic conductivity for slug/bail tests were estimated to be $6.65{\times}10^{-5}$ m/sec in sbt-1 well, $6.33{\times}10^{-6}$ m/sec in sbt-2 well, and $3.72{\times}10^{-5}$ m/sec in sbt-3 well. Average specific storage coefficient for slug/bail tests were estimated to be 0.0225 in sbt-1 well, 0.0177 in sbt-2 well, and 0.0259 in sbt-3 well. Dimensionless time and dimensionless wellbore storage were estimated by use of transmissivity, storativity, test time, and specification of test wells. And, dimensionless drawdown were selected by parameter ${\alpha}\;and\;{\beta}$ parameter from Cooper et al. (1967). Radius of influence were estimated by estimated dimensionless time, dimensionless wellbore storage, and dimensionless drawdown. The average radius of influnce for slug/bail tests were estimated to be 1.377 m in sbt-1 well, 1.253 m in sbt-2 well, and 1.558 m in sbt-3 well. Pore volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,636cm^3$ in sbt-1 well, $71,561cm^3$ in sbt-2 well, and $100,418cm^3$ in sbt-3 well. Pore volume excepted well volume at groundwater level drawdown zone by dummy withdrawal for bail tests were estimated to be $145,410cm^3$ in sbt-1 well, $71,353cm^3$ in sbt-2 well, and $100,192cm^3$ in sbt-3 well.

Variation Characteristics of Hydraulic Gradient and Major Flow Direction in the Landfill Soils (매립지 토양층의 수리경사와 주 흐름 방향의 변동특성)

  • Kim, Tae-Yeong;Kang, Dong-Hwan;Kim, Sung-Soo;Kwon, Byung-Hyuk
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.315-323
    • /
    • 2009
  • Hydraulic gradient of the landfill soils is estimated by Devlin (2003) method, and its variation characteristics from rainfall and permeability of the aquifer material are analyzed. The study site of 18 m $\times$ 12 m is located in front of the Environment Research Center at the Pukyong National University, and core logging, slug/bail test and groundwater monitoring was performed. The sluglbail tests were performed in 9 wells (except BH9 well), and drawdown data with elapsed time for bail tests were analyzed using Bouwer-Rice and Hvorslev methods. The average hydraulic conductivity estimated in each of the test wells was ranged $1.991{\times}10^{-7}{\sim}4.714{\times}10^{-6}m/sec$, and the average hydraulic conductivity in the study site was estimated $2.376{\times}10^{-6}m/sec$ for arithmetic average, $1.655{\times}10^{-6}m/sec$ for geometric average and $9.366{\times}10^{-7}m/sec$ for harmonic average. The permeability of landfill soils was higher at the east side of the study site than at the west side. Groundwater level in 10 wells was monitored 44 times from October 2 to November 7, 2007. The groundwater level was ranged 1.187$\sim$1.610 m, and the average groundwater level range in each of the well showed 1.256$\sim$1.407 m. The groundwater level was higher at the east side than at the west side of the study site, and this distribution is identify to it of hydraulic conductivity. The hydraulie gradient and the major flow direction for 10 wells were estimated 0.0072$\sim$0.0093 and $81.7618{\sim}88.0836^{\circ}$, respectively. Also, the hydraulic gradient and the major flow direction for 9 wells were estimated 0.0102$\sim$0.0124 and $84.6822{\sim}89.1174^{\circ}$, respectively. The hydraulic gradient of the study site increased from rainfall (83.5 mm) on October 7, causing by that the groundwater level of the site with high permeability was higher. The hydraulic gradient estimated on and after October 16 was stable, due to almost no rainfall. Thus, it was confirmed that the variation of the hydraulic gradient in the landfill soils was controlled by the rainfall.