• Title/Summary/Keyword: Sludge reduction

Search Result 315, Processing Time 0.028 seconds

Evaluation of Environmental and Economic Impacts of Advanced Wastewater Treatment Plants with Life Cycle Assessment (고도 하수처리장의 전과정평가에 따른 환경성 및 경제성 평가)

  • Pyo, SeHee;Kim, MinJeong;Lee, SeungChul;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.503-515
    • /
    • 2014
  • A lot of existing wastewater treatment plants (WWTPs) are rebuilt or retrofitted for advanced wastewater treatment processes to cope with reinforced effluent criteria of nitrogen and phosphorous. Moreover, how to treat the wasted sludge from WWTPs has been also issued since the discharge of the wasted sludge into ocean is impossible from 2011 due to the London Convention 97 protocol. These trend changes of WWTPs get a motivation to assess environmental and economic impacts from the construction stage to the waste stage in WWTPs. Therefore, this study focuses on evaluation of environmental and economic impacts of the advanced wastewater treatment processes and waste sludge treatment process by using life cycle assessment. Four advanced wastewater treatment processes of Anaerobic/Anoxic/Oxic ($A_2O$), 5 stages-Bamard Denitrification Phosphate (Bardenpho), Virginia Initiative Plant (VIP), and Modified University of Cape Town (MUCT) are chosen to compare the conventional activated sludge (CAS) and three waste sludge treatment methods of land fill, incineration, and composting are used. To evaluate environmental and economic impacts of each advanced wastewater treatment processes, life cycle assessment (LCA) and life cycle cost (LCC) are conducted based on International organization for standardization (ISO) guidelines. The results clearly represent that the $A_2O$ process with composting shows 52% reduction in the environmental impact than the CAS process with landfill. On the other hand, the MUCT process with composting is able to save 62% of the life cycle cost comparing with the CAS process with landfill. This result suggested the qualitative and quantitative criteria for evaluating eco-environmental and economic technologies of advanced treatment processes and also sludge treatment method, where their main influence factors on environmental and economic impacts are analyzed, respectively. The proposed method could be useful for selecting the most efficient and eco-friendly wastewater treatment process and sludge treatment method when retrofitting the existing WWTPs to advanced treatments.

Platinum complex oxide electrode catalyst for the solubilization of sewage sludge (하수슬러지 가용화 위한 백금족 복합 산화물 촉매 전극 개발)

  • Yoo, Jaemin;Kim, Hyunsook;pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.352-360
    • /
    • 2016
  • The purpose of this study was to determine the electrochemical properties develop DSA electrode for sewage sludge solubilization. Using Ir as a main catalyst, the catalyst selected for the sewage sludge solubilization durability and proceeds to functional electrode suitable for sewage sludge electrolysis experiment were obtained the following results. Less mass reduction of the sintering temperature of the main catalyst, Ir coated electrodes, the endothermic reaction zone $300^{\circ}C$ to $500^{\circ}C$, which was selected from a range of experiments. The efficiency of the catalyst results came up to $350^{\circ}C$ best. Each Binder stars (Ta, Sn, W) in this experiment was the biggest catalyst efficiency at $350^{\circ}C$. Used as a binder, $TaCl_5$, $SnCl_4$, $WCl_6$ of the Ta and without affecting the other characteristics of the main catalyst than Sn, W. For the 50% $IrO_2$ electrode is 1.4 V (vs. Ag / AgCl) in a current of about $29mA/cm^2$ was caused to evaluate the effectiveness of the electrode.

Recovery of Silicon from Silicon Sludge by Electrolysis (실리콘 슬러지로부터 실리콘의 전해회수(電解回收))

  • Park, Jesik;Jang, Hee Dong;Lee, Churl Kyoung
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2012
  • As a recovery of elemental silicon from the sludge of Si wafer process, a process of mechanical separation-chlorine roasting-electrolysis has been suggested. The silicon sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by mechanical separation. The Si-SiC mixture was converted to silicon chloride by chlorine roasting at $1000^{\circ}C$ for 1 hr and the silicon chloride was dissolved into an ionic liquid of $[Bmpy]Tf_2N$ as an electrolyte. Cyclic voltammetry results showed an wide voltage window of pure $[Bmpy]Tf_2N$ and a reduction peak of elemental Si from $[Bmpy]Tf_2N$ dissolved $SiCl_4$ on Au electrode, respectively. The silicon deposits could be prepared on the Au electrode by the potentiostatic electrolysis of -1.9 V vs. Pt-QRE. The elemental silicon uniformly electrodeposited was confirmed by various analytical techniques including XRD, FE-SEM with EDS, and XPS. Any impurity was not detected except trace oxygen contaminated during handling for analysis.

Effects of Soil Amendments on the Early Growth and Heavy Metal Accumulation of Brassica campestris ssp. Chinensis Jusl. in Heavy Metal-contaminated Soil (중금속 오염 토양에서 안정화제가 청경채의 초기 생육과 중금속 흡수량에 미치는 영향)

  • Kim, Min-Suk;Koo, Namin;Kim, Jeong-Gyu;Yang, Jae-E.;Lee, Jin-Su;Bak, Gwan-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.961-967
    • /
    • 2012
  • There have been many studies about efficiency of amendments for heavy metal stabilization through chemical assessment. The objective of this study was to evaluate the efficiency of several soil amendments (lime, agric-lime, dolomite, steel slag, fly ash and acid mine drainage sludge) on heavy metals stabilization through not only chemical but also biological assessments (phytotoxicity test) in abandoned mining area soil. In order to achieve the goal, we conducted preliminary screening experiment targeting 12 types of crop plants such as radish, young radish, chinese cabbage, winter grown cabbage, cabbage, bok choy, chicory, crown daisy, carrot, chives, spinach, and spring onion. The results of inhibition rates of early plant growth in metal-contaminated soil against non-contaminated soil and the correlations between inhibitions items showed that the bok choy was appropriate specie with respect to confirm the effect of several amendments. Several amendment treatments on contaminated soil brought about the changes in the root and shoot elongation of bok choy after 1 week. Agric-lime, dolomite and steel slag treatments showed the great efficiency of reducing on mobility of heavy metals using chemical assessment. But in contrary, these treatments resulted in the reduction of root and shoot elongation and only AMD sludge increased that of elongation, significantly. When considering both chemical and biological assessments, AMD sludge could be recommended the compatible amendment for target contaminated soil. In conclusion, biological assessment was also important aspect of decision of successful soil remediation.

Development of the pH Inhibition Model Adapting Pseudo Toxic Concentration (CPT) Concept for Activated Sludge Process (의사독성농도 (CPT) 개념을 도입한 활성슬러지 공정 pH 저해 모델 개발)

  • Ko, Joo-Hyung;Jang, Won-Ho;Im, Jeong-Hoon;Woo, Hae-Jin;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2037-2046
    • /
    • 2000
  • It has been reported that the inhibition effect of pH on activated sludge follows noncompetitive inhibition kinetics. However. the noncompetitive inhibition kinetic equation can not be directly applied to pH inhibition because of the difficulty in quantification of pH in terms of inhibitor concentration. So, many empirical equations have been developed to describe the pH inhibition effect especially for acidic condition. In this research. the pseudo toxic concentration ($C_{PT}$) concept model to quantify pH inhibition effect on activated sludge was proposed and compared to other existing models. The $C_{PT}$ concept model can explain the reduction of the maximum specific growth rate (${\mu}_{max}$) caused by the pH inhibition more accurately than any other models, at a wide range of pH. The only model parameter. $K_I$ can be easily estimated by Lineweaver-Burk linearization method.

  • PDF

Neutralization Treatment of Acid Mine Drainage Using Ca(OH)2 (소석회를 이용한 산성광산배수 중화처리)

  • Park, Young-Goo;Park, Joon-Seok;Hong, Seong-Ju
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.391-396
    • /
    • 2005
  • This study was conducted to neutralize acid mine drainage (AMD) of Soo and Hambaek mines, located in Kangwon-Do Korea, using $Ca(OH)_2$. When 0.295 g $Ca(OH)_2/L$(AMD) was added to the drainage in a neutralization reactor, pH of liquid in the reactor and the effluent were maintained at 9.5 and 8.4, respectively. The pH met the required effluent standard. With 10~50% of feedback of effulent sludge to the reactor, the pH of neutralized fluid in the reactor remained nearly constant, but $SO{_4}^{-2}$ concentration in the effluent increased adversely compared to the non-return sludge case. With 30% of sludge feedback, it was possible to decrease suspended solids (SS) concentration in the effluent without a problem in Fe concentration. When 100 mL of 0.1 M $BaCl_2$ was added to 1 L of AMD treated with $Ca(OH)_2$, removal efficiency of $SO{_4}^{-2}$ increased to over 90%. Aanalyses of pH, Fe, and $SO{_4}^{-2}$ showed that the optimal results were obtained when pH of neutralizatio reactor and sludge return ratio were maintained at 9.5 and 30%. This can result in possible cost reduction of 31.4% for maintenance and 29.8% for facility construction by alternating $Ca(OH)_2$ to NaOH.

Stabilization of Two Mine Drainage Treated Sludges for the As and Heavy Metal Contaminated Soils (오염토양 특성별 광산배수처리슬러지의 비소 및 중금속 안정화)

  • Tak, Hyunji;Jeon, Soyoung;Lee, Minhee
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.10-21
    • /
    • 2022
  • In the South Korea, 47% of abandoned mines are suffering from the mining hazards such as the mine drainage (MD), the mine tailings and the waste rocks. Among them the mine drainage which has a low pH and the high concentration of heavy metals can directly contaminate rivers or soil and cause serious damages to human health. The natural/artificial treatment facilities by using neutralizers and coagulants for the mine drainage have been operated in domestic and most of heavy metals in mind drainage are precipitated and removed in the form of metal hydroxide, alumino-silicate or carbonate, generating a large amount of mine drainage treated sludge ('MDS' hereafter) by-product. The MDS has a large surface area and many functional groups, showing high efficiency on the fixation of heavy metals. The purpose of this study is to develop a ingenious heavy metal stabilizer that can effectively stabilize arsenic (As) and heavy metals in soil by recycling the MDS (two types of MDS: the acid mine drainage treated sludge (MMDS) and the coal mine drainage treated sludge (CMDS)). Various analyses, toxicity evaluations, and leaching reduction batch experiments were performed to identify the characteristics of MDS as the stabilizer for soils contaminated with As and heavy metals. As a result of batch experiments, the Pb stabilization efficiency of both of MDSs for soil A was higher than 90% and their Zn stabilization efficiencies were higher than 70%. In the case of soil B and C, which were contaminated with As, their As stabilization efficiencies were higher than 80%. Experimental results suggested that both of MDSs could be successfully applied for the As and heavy metal contaminated soil as the soil stabilizer, because of their low unit price and high stabilization efficiency for As and hevry metals.

A Comparative Study on Thermal and Belt Press Dewatering for Waterworks Sludge Rduction (열 탈수와 벨트프레스 탈수장치의 현장적용에 따른 탈수성 비교연구)

  • Lee, Jung-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1016-1023
    • /
    • 2006
  • The water content of dewatered cake produced from belt press dewatering equipment was about 75 wt% which was some high to handle it, so the equipment contained a limit at the economical and environmental aspect. The thermal dewatering equipment built as an alternative to overcome several problems was set up at the sludge treatment field and estimated some feasibility as comparison with the dewatering performance of belt press. First, dewatering properties of waterworks sludge was analyzed by monthly. The sludge of a water shortage season contained a high organic content which led to be difficult to dewater the cake, the other side the sludge of rainwater season was ease to dewater because of low organic content. According to the results to analysis the water content of dewatered cake produced from two equipments on the base of the seasonal dewatering properties, the water content of dewatered cake produced from thermal dewatering for sludge of water shortage season was $41.6{\sim}48.3$ wt% and $71{\sim}84$ wt% from belt press. In the case of rainwater season, the water content of dewatered cake produced from thermal dewatering was $34{\sim}37.7$ wt% and $57{\sim}70$ wt% from belt press. It was understood that thereduction of water content of cake by thermal dewatering was larger than belt press. The economical aspect for two equipments was evaluated on considering the reduction of cake treatment amount as the decrease of water content of cake. When putting the cost index of thermal dewatering into 100, belt press was 121. This meant that thermal dewater was more economical than belt press by about 20% in the side of construction and operation. In conclusion, thermal dewatering equipment was estimated by producing the low water content dewatered cake as well as being operated with low coat.

Membrane fouling reduction using electro-coagulation aided membrane bio-reactor (전기응집 분리 막 생물반응기의 막 오염 저감)

  • Kim, Wan-Kyu;Hong, Sung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.105-114
    • /
    • 2018
  • Membrane fouling in EC-MBR (Electro-Coagulation aided Membrane Bio-Reactor) processes was evaluated according to the operating parameters, such as current density and contact time. In addition, the fouling mechanism was investigated. Compared to the control (i.e., no electro-coagulation), membrane fouling for filtration of the activated sludge suspension after electro-coagulation was reduced significantly. Membrane fouling was improved further when the contact time was doubled under a low current density of $2.5A/m^2$. On the other hand, membrane fouling was not mitigated further, as expected, even though the contact time was doubled from 12 to 24 hr. at a current density of $10A/m^2$. This indicates that the overall decrease in membrane fouling is a function of the product of the current density and contact time. The particle size of the activated sludge flocs after electro-coagulation was changed slightly, which means that the membrane fouling reduction was not attributed to a larger particle size resulting from electro-coagulation. The experimental confirmed that the dynamic membrane made from aluminum hydroxide, Al(OH)3, and/or aluminum phosphate, Al(PO4), which had been formed during the electro-coagulation, played a key role on the reduction of membrane fouling. The dynamic membrane prevents the particles in the feed solution from deposition to the membrane pores and cake layers. Dynamic membrane formation as a result of electro-coagulation plays a critical role in the mitigation of membrane fouling in EC-MBR.

Insight into influence of iron addition in membrane bioreactor on gel layer fouling

  • Zhang, Haifeng;Lu, Xin;Yu, Haihuan;Song, Lianfa
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.543-551
    • /
    • 2017
  • Membrane fouling in membrane bioreactor (MBR) remains a primary challenge for its wider application. The focus of this study to investigate the influence of iron distribution in activated sludge on gel layer fouling in MBR. Significant reduction in the transmembrane pressure (TMP) rise rates was observed in the presence of iron as result of retarding the gel layer formation time. The spatial distribution of iron had a significant impact on the stratification structure of extracellular polymeric substances (EPS) fractions, such as proteins (PN) and polysaccharides (PS). A mitigation of PN or PS from the supernatant to the EPS inner layers was observed in the presence of iron. Compared with the control reactor, the reduction in PN and PS of the supernatant and lower PN/PS rates of the LB-EPS were beneficial to decrease the membrane fouling potential during the gel layer formation. Consequently, the iron addition managed to control gel layer fouling could be a useful strategy in MBR.