• Title/Summary/Keyword: Sludge mixture

Search Result 177, Processing Time 0.021 seconds

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

The Engineering Characteristics of the Sludge Mixed Soil (슬러지 혼합토의 공학적 특성)

  • Kim, JungUn;Kim, MyeongKyun;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2011
  • As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.

Optimum Mixing Ratio of Sewage Sludge during Composting of Food Wastes (음식물쓰레기의 퇴비화시 하수슬러지의 최적 혼합비율)

  • Lee Young Sei;Choi Hyun Kuk;Kim Jung Keun;Lee Yong Hee;Chung Kyung Tae;Roh Jong Su;Suh Myung Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.5 s.81
    • /
    • pp.366-373
    • /
    • 2004
  • Food waste is becoming by environmental problem nowdays increasing festinately in Korea during past 10 years. Food waste collected from garbage trucks that is offered in S municipal government that food waste mixs enough, and sewage sludge collected in the country. Composting experiment conditions achieved in the mixture ratio rate that food waste and sewage sludge are each 10:90, 30:70, 50:50, 60:40, 70:30 and 90:10 $wt\%$. The fermentation temperature was $18{\sim}22^{\circ}C$ at the beginning, and then it was sharply increased to $44{\sim}66^{\circ}C$ up to 1 day after fermentation, which was maintained for more than 3 days. Then, it was slowly decreased to $18{\sim}25^{\circ}C$ up to 8 days after fermentation, which was maintained all the time. It could be known from examiation of various conditions, including reaction rate, salinity. carbon/nitrogen(C/N) ratio, temperature, organic substance, etc.. Optimum mixture ratio rate of composting using food waste and sewage sludge was 60:40 $wt\%$.

The Characteristics of Solidification and Leachability of Lead Sludge (납슬러지 고형화 및 용출 특성)

  • 연익준;주소영;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.22-30
    • /
    • 1999
  • This study was carried out to examine the compressive strength characteristics of solids solidified with the lead sludge with mixture of cement and fly ashes as additive. And the additives are commercial fly ash and ESP(Electrostatic precipitator) fly ash. The compressive strength of solidified lead sludge solid was increased by adding fly ash up to 46~62%, which was the results of pozzolanic reaction. When replaced the cement with 10%of commercial fly ash, the solid showed the highest value $210{\;}kg/cm^2$, and the solidification conditions were 0.55 of the water/cement ratio and curing for 14 days. Also, the results of leaching test by EPT(Environmental Protection Agency-Toxicity Test) were showed that the solidified lead has leached out under 10%, which was less than 0.173 mg/L of EPA standard. As leaching solutions, the demineralized water, 0.1N acetic acid solution, and synthetic brine were used. and the observations by SEM of the solidified lead-laden solid after EPT leaching test were indicated the severe erosion on solid surface.

  • PDF

Quality Characteristic of lightweight aggregate using sewage sludge and fly-ash for non-structural concrete under different condition (소성조건 변화에 따른 하수슬러지와 석탄회를 이용한 비구조용 경량골재의 품질 특성)

  • Kim, Dug-Mo;Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.201-204
    • /
    • 2004
  • The purpose of this study is recycling of sewage sludge and fly-ash. In this experiment, green aggregates, which is a mixture of sewage sludge and clay and fly-ash, with different content of sewage sludge (up to $80wt\%$). Then they were burned in different soak temperatures from $1190^{\circ}C\;to\;1290^{\circ}C$ with changed soak time and heating rate at 5, 7, 10 minutes and $20^{\circ}C/min$, $30^{\circ}C/min$ respectively in order to produce lightweight aggregate (LWA). Data of both experiment series were generated to evaluate the quality of LWA as well as the relationship between burning condition and product's quality.

  • PDF

Composting of Sewage Sludge and Llum Sludge (하수슬러지와 Alum 슬러지를 이용한 퇴비화)

  • Chang, Ki Woon;Lim, Jae Shin;Lee, In Bog;Kim, Young Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.61-71
    • /
    • 1995
  • This study is concerned with the assessment of the possibility of alum sludge composting, as well as changes of some chemical properties during composting. Alum sludge was mixed in different proportions, which are 0%, 25%, 35% and 45%, respectively, with a sewage sludge and sawdust mixture. The final mixtures to be composted are placed on static piles constructed with a perforated aeration pipe on the ground, and composted for more than 50 days. During the composting of some alum sludge treatments, there was not notable difference in changes of pH, C/N ratio, and content of several minerals among the alum sludge treatments, while changes of pile temperatures and CEC were significant and these remarkable differences in related to the pile temperatures and CEC seem suitable for the evaluation of alum sludge maturity. Also, the results suggested that the proper mixing ratio of alum sludge for composting was 25% level.

  • PDF

Incorporation of water sludge, silica fume, and rice husk ash in brick making

  • Hegazy, Badr El-Din Ezzat;Fouad, Hanan Ahmed;Hassanain, Ahmed Mohammed
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.83-96
    • /
    • 2012
  • The water sludge is generated from the treatment of water with alum. Disposing of sludge again to the streams raises the concentrations of aluminum oxides in water, which has been linked to Alzheimer's disease. The use of water treatment plant (WTP) sludge in manufacturing of constructional elements achieves both the economical and environmental benefits. Due to the similar mineralogical composition of clay and WTP sludge, this study investigated the complete substitution of brick clay by sludge incorporated with some of the agricultural and industrial wastes, such as rice husk ash (RHA) and silica fume (SF). Three different series of sludge to SF to RHA proportions by weight were tried, which were (25: 50: 25%), (50: 25: 25%), and (25: 25: 50%), respectively. Each brick series was fired at 900, 1000, 1100, and $1200^{\circ}C$. The physical and mechanical properties of the produced bricks were then determined and evaluated according to Egyptian Standard Specifications (E.S.S.) and compared to control clay-brick. From the obtained results, it was concluded that by operating at the temperature commonly practiced in the brick kiln, a mixture consists of 50% of sludge, 25% of SF, and 25% of RHA was the optimum materials proportions to produce brick from water sludge incorporated with SF and RHA. The produced bricks properties were obviously superior to the 100% clay control-brick and to those available in the Egyptian market.

Characteristics of Municipal Sewage Sludge Affecting the Biodegradation of a Plastic Material Under Aerobic Condition (호기적 조건에서 플라스틱 생분해에 영향을 미치는 도시 하수 오니의 성질)

  • Seo, In-Sun;Lee, Myung-Cheon;Kim, Byung-Hong;Shin, Pyong-Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.436-442
    • /
    • 1994
  • The characteristics of activated sludge affecting the biodegradation of plastic materials under aerobic condition were studied using cellophane film as a model system. The activated sludges of site 3, which treat a mixture of domestic sewage and supernatant of septic tank, obtained from December 1993 to April 1994 showed similar biodegradation activities. Biodegradations for 28 days reached around 80%. Viable cell number of inoculums maintained at a level of 10$^{6}$~10$^{7}$ /ml. In this range, viable cell number showed no relationship with biodegradation activities. The activa- ted sludges of site 2, which treat a mixture of domestic sewage and anaerobic digest of nightsoil, obtained four times from April 1993 to April 1994 showed very different biodegradation activities ranged from 20% to 80% for 28 days. Inoculum size affects biodegradation significantly. One percent inoculum showed the best biodegradation among the inoculum sizes of 0.1, 1.0 and 10%. Ten percent inoculum revealed inhibitory effects on the biodegradation activity which can be greatly reduced by centrifugation and filtration. Filtration was better than centrifugation in reducing inhibitory effects.

  • PDF

PHYSICOCHEMICAL CHARACTERIZATION OF UASB GRANULAR SLUDGE WITH DIFFERENT SIZE DISTRIBUTIONS

  • 안영희;송영진;이유진;박성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.172-181
    • /
    • 2001
  • Upflow anaerobic sludge blanket (UASB) system employs granular sludge to treat various wastewaters including landfill leachate. CH$_4$ production of the granules determines overall performance of a UASB reactor. Sludge granules are developed by self-granulation of microorganisms and dynamic balance between granule growth and decay results in coexistence of granules with different sizes in the reactor. In this study, granules taken from a laboratory-scale UASB reactor were classified into 4 groups based on their diameters and their Physicochemical characteristics we were investigated. Each group was analyzed for settling ability, specific methanogenic activity (SMA), and elemental content. Settling ability was proportional to granule diameter. suggesting effective detainment of larger granules in the reactor. When acetate or glucose was used as a substrate, all groups showed relatively slight difference in SMA. However SMA with a volatile fatty acid mixture showed significant increase with granule diameter, suggesting better establishment of syntrophic relationship in larger granules. Larger granules showed higher value of SMA upon environmental changes (i.e., PH, temperature, or toxicant concentration). Comparative analysis of elemental contents showed that content (dry weight %) of most tested elements (iron, calcium, phosphorus, zinc, nickel. and manganese) deceased with granule diameter, suggesting importance of these elements for initial granulation. Taken together, this study verified experimentally that Physicochemical Properties of granules are related to granule size distributions. Overall results of physicochemical characterization supports that larger.

  • PDF

A Study on Combustion Characteristics and Evaluating of RDFs(Refused Derived Fuels) from Mixture of Petrochemical Wastewater Sludge and Organic Matters (석유화학폐수슬러지와 유기성 폐기물 혼합에 의한 연소특성 및 고형연료 폐기물화 재활용에 관한 연구)

  • Han, Young-Rip;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.2
    • /
    • pp.237-244
    • /
    • 2015
  • This objectives of research are to figure out combustion characteristics with increasing temperature with petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and sawdust, and to exam heating value and ignition temperature for using refused derived fuels(RDFs). After analyzing TGA/DTG, petrochemical sludge shows a rapid weight reduction by vaporing of inner moisture after $170^{\circ}C$. Gross weight reduction rate, ignition temperature and combustion rates represent 68.6%, $221.9^{\circ}C$ and 54.1%, respectively. In order to assess the validity of the RDFs, the petrochemical sludge by adding wasted organic matters which are waste electric wire, anthracite coal and waste sawdust. The materials are mixed with 7:3(petrochemical sludge : organic matters)(wt%), and it analyzes after below 10% of moisture content. The ignition temperatures and combustion rates of the waste electric wire, anthracite coal and waste sawdust are $410.6^{\circ}C$, $596.1^{\circ}C$ and $284.1^{\circ}C$, and 85.6%, 30.7% and 88.8% respectively. In heating values, petrochemical sludge is 3,600 kcal/kg. And the heating values of mixed sludge (adding 30% of the waste electric wire, anthracite coal and waste sawdust) each increase up to 4,600 kcal/kg, 4,100 kcal/kg and 4,300 kcal/kg. It improves the ignition temperatures and combustion rates by mixing petrochemical sludge and organic matters. It is considered that the production of RDFs is sufficiently possible by using of petrochemical sludge by mixing wasted organic matters.