• Title/Summary/Keyword: Sludge compost

Search Result 117, Processing Time 0.027 seconds

Effects of Liming on Uptake to Crops of Heavy Metals in Soils amended with Industrial Sewage Sludge (하수오니 시용토양에서 작물의 중금속 흡수이행에 미치는 석회의 영향)

  • Jung, Goo-Bok;Kim, Won-Il;Lee, Jong-Sik;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.1
    • /
    • pp.38-44
    • /
    • 2002
  • The effect of lime on plant availability of heavy metals in soils amended with industrial sewage sludge (ISS) or pig manure compost (PMC) was investigated. A pot experiment with Altari radish (Raphanus sativus) was conducted. Industrial sewage sludge and Pig manure compost were added at 25 and 50 Mg/ha, and lime was added at 3 Mg/ha. Heavy metal contents of ISS treated soils after experiment were higher than those in control (NPK plot) and PMC treatment. Specially, the contents of copper, zinc, nickel and chromium in the 50 Mg/ha of ISS treated soils were higher 12$\sim$48 times than those in control. Copper, zinc, and nickel contents in Altari radish leaves cultivated at the ISS treated soil exceeded the critical levels of plant toxicity. Copper, zinc, and nickel contents in Altari radish loaves and roots cultivated at the ISS treated soil were reduced by the addition of lime. Copper, zinc, and nickel contents in Altari radish loaves were negatively correlated with soil pH after experiment. It concluded that liming would reduce the uptake of heavy metals by plants and be a temporary method of reclamation at the highly heavy metal accumulated soils by ISS.

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.239-253
    • /
    • 1999
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~91% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable canons were high in surface soil. and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni. Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.416-431
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~97% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable cations were high in surface soil, and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni, Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

The Study on the Composting by Using Dam Suspended Particle Sawdust and Sewage Sludge (댐부유물 톱밥과 하수슬러지를 이용한 퇴비화 연구)

  • Ryu, Ji-Hune;Lee, Jong-Jin;Hong, Joo-Hwa;Chang, Ki-Woon;Lee, Gyu-Seung;Park, Gwan-Soo;Han, Ki-Pil
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • This study was carried out on the composting of the most part of the plant waste materials inflowed-drifting into the dam during the localized heavy rain and the rainy season, due to the abnormal climate change, and for the sewage sludge banned to dispose legally into the ocean from the year of 2012. It was analysed the distinctive physicochemical qualities of the compost with treatment S-1(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 20 : 40 : 10) and treatment S-2(dam suspended particle sawdust : oak tree bark : sewage sludge : chicken manure = 30 : 30 : 30 : 10). Both S-1 and S-2 maintained for 10 days at above $65^{\circ}C$ of the compost pile temperature, and the most of its pathogen were destroyed. In case of pH, until the 90th day into composting, S-1 with the pH value of 7.78 was slightly higher than S-2. The C/N value of S-1 was 15.3 and that of S-2 was 16.9. The quality of its final product was satisfied to the manufacture-standards. The GI value of S-1 was 91 higher than that of S-2, which was 84. In conclusion, it is highly recommendable to manufacture S-1 for its frequent usage of dam suspended particle sawdust and sewage sludge, and for its excellent quality and safety.

Use of Industrial Wastes as Sources of Organic Fertilizer II. Effect of Activated Sludge from Alcohol Fermentation on Rice (산업폐기물(産業廢棄物)의 비료화(肥料化)에 관(關)한 연구(硏究) II. 수도(水稻)에 대(對)한 주정오니(酒精汚泥) 비효시험(肥效試驗))

  • Shin, Jae-Sung;Lim, Dong-Kyu;Seong, Ki-Seog
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.3
    • /
    • pp.256-259
    • /
    • 1983
  • An activated sludge from alcohol fermentation was applied on rice field to determine the effect of the sludge on rice growth and its optimum application rate. The mineralization of sludge was rather rapid compared to compost and about 60% of the total nitrogen in sludge applied was decomposed. Plant growth and nitrogen content in plant increased as sludge application rate increased but the yield markedly decreased when more than 1,600kg/10a of sludge was applied. The optimum application rate was found to be 800kg/10a. Results from this experiment confirm that the sludge from alcohol fermentation is potentially useful resources for organic fertilizers and soil amendments.

  • PDF

Study on Sludges of Waste Water Disposal Plant for Practical Application as Raw materials of organic compost (폐수배출업소 오니의 퇴비원료로 활용 가능성 연구)

  • Lim, Dong-Kyu;Lee, Sang-Beom;Kwon, Soon-Ik;Nam, Jae-Jag;Na, Young-Eun;Kwon, Jang-Sik;Kim, Wan-Jin;Han, Sang-Gyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.97-109
    • /
    • 2003
  • This study was conducted to investigate use possibility on waste water sludges of water disposal plant as raw materials of organic compost at Fertilizer Official Regulation of Fertilizer Management Law in 2002. In heavy metal contents, some water service sludges were discovered a little over than the standard levels of raw material regulated in organic compost and most of them were not reached the levels. But they were difficult for using the raw materials of organic compost owing to shortage of the organic content. It was judged that the fiber and leather sludges were much in the heavy metal contents and they couldn't use as the raw materials of organic compost. There was afraid that a little heavy metal contents of cosmetic sludge were less than the levels, but it was possible to use selectively as a raw material.

  • PDF

The Effect of Long-term Application of different Organic Material Sources on Soil Physical Property and Microflora of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 물리성 및 미생물상 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Sang-Bok;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.365-372
    • /
    • 2001
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil physical properties and microorganism in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC). cow manure compost(CMC). human excrement sludge(HES), and food industrial sludge compost(FISE) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : Bulk density of loam soil decreased with compost application to $1.07{\sim}1.32Mg\;m^{-3}$ compared with $1.49Mg\;m^{-3}$ of control plot, while in sandy loam soil it decreased to $1.00{\sim}1.20Mg\;m^{-3}$ compared with $1.25Mg\;m^{-3}$ of control plot. Bulk density of soil was decreased according to maize cultivation compared with bare control, but soybean cultivation was similar. Population of organic material decomposing microorganisms was increased rapidly at the initial incubation stage at $25^{\circ}C$, and increased more sensitively at the loam soil than sandy loam soil. In the case of the change of microorganisms associated with nitrogen circulation, ammonia oxidizing bacteria was more at the initial incubation stage, and denitrifying bacteria was more at the initial incubation stage, and denitrifying bacteria increased until 1~4 weeks after incubation and increased more at the loam soil than sandy loam soil.

  • PDF

Change of Nutrition Loss of Long-term Application with Different Organic Material Sources in Upland Soil (유기물원이 다른 퇴비연용 밭토양에서 양분유실량 변화)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Kim, Jae-Duk;Han, Sang-Su;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.432-445
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of nutrition loss in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The loss of nutrients in the form of cation and anion by run-off water increased with the increase of compost application rate. Compared with bare soils, maize cultivation decreased the nutrient loss by run-off from soils by 43% in anionic form and 32% in cationic form. Amount of cation loss were ordered $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ > $NH_4{^+} $ and that of anion loss were ordered $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^-$ > $PO_4{^{3-}}$. Nutrient loss of sand loam soil in the cation and anion by percolation water increased 1.7 times compared with loam soil. $NO_3{^-}-N$ contents in percolated water were high at the initial stage after compost application, and the amounts were higher in sandy loam soil than loam soil. The maize cultivation also decreased the $NO_3{^-}-N$ contents in percolated water by 82% in loam soil, and 58% in sand loam soil. Soil pH of composts determined by laboratory incubation test increased pH 6.1~6.8 application with poultry and cow manure compost but application with human excrement sludge decreased pH 4.5~4.7. Soil EC were increased initially composts application and decreased up to 2 weeks, thereafter kept a certain level. Nitrogen mineralization rates of composts determined by laboratory incubation test at $25^{\circ}C$ were 39~76% in sandy loam soil, and 16~48% in clay loam soil.

  • PDF

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF

Changes of Physico-chemical Properties during the Composting of Korean Food Waste (음식물찌꺼기를 이용한 퇴비의 부숙과정중 이화학적 특성의 변화)

  • Chang, Ki-Woon;Lee, In-Bog;Lim, Jae-Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • This study was conducted to estimate the stabilization degree of compost which made from Korean food wastes. To make the compost, food wastes were mixed with dried paper sludge, sawdust and the rotten wood waste which had cultivated mushrooms, and then mixture was composted in $1.1m^3$ of chamber which installed with the blower for maintaining the aerobic condition. Y value, EC and pH were changed remarkably for the early stage of composting. These changes showed that the compost of food wastes could be stabilized within 30~35 days and that the substrate, food wastes, can be easily used as energy source for microorganisms. Although these phyico-chemical properties indicated that food wastes could be composted within 30 days during the composting, the temperature of pile maintained over $50^{\circ}C$ for 80 days, and C/N ratio decreased gradually for over 50 days. In conclusion, more than 50 days were required to stabilize the compost of food wastes.

  • PDF