• Title/Summary/Keyword: Sludge Reduction

Search Result 314, Processing Time 0.03 seconds

Effect of the Application of Microbubbles and/or Catalyst on the Sludge Reduction and Organic matter of Livestock Wastewater (마이크로버블과 촉매 적용에 따른 가축분뇨의 슬러지와 유기오염물질 감량 효과)

  • Jang, Jae Kyung;Kim, Min Young;Sung, Je Hoon;Chang, In Seop;Kim, Tae Young;Kim, Hyun Woo;Kang, Young Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.558-562
    • /
    • 2015
  • This study was tested to evaluate the effect of the six different combinations of microbubble, catalyst, and air as oxidant on the sludge and organic matter reduction. When all of microbubbles and catalyst, and an oxidizing agent (under Conditions 1) such as air were used, the sludge was removed more than 99%, and TCOD and SCOD removal was 58% and 13%, respectively. This result was the highest value of six conditions. In the following order, the sludge reduction of the microbubbles with air (Condition 2) and catalyst with air (condition 4) was 95% and 93.1%, respectively. TCOD removal was found to be each 53% and 47%. When the microbubbles were used with oxidant like air, the removal of sludge and organic matter was high. All of these values were higher than that of using only microbubbles and catalyst without air. In the microbubbles and catalyst react under air supply condition, OH-radicals were generated in the reaction process. These OH-radicals in the reaction process decomposed the pollutants by the strong oxidizing power. In all conditions with air, the sludge reduction was high removal rate more than 93% and TCOD removal was over 47%.

Removal of Toxicity from Kraft Pulp Mill Effluents by Activated Sludge Process (활성슬러지 공정에 의한 Kraft 펄프 폐수의 독성 제거)

  • Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.9-18
    • /
    • 1994
  • Activated sludge pilot plant testing was conducted to determine the ability of a well-designed activated sludge treatment system to remove chromic toxicity from the bleached kraft pulp mill effluent. Removals of conventional(BOD and SS) and nonconventional(resin and fatty acids, color, AOX) pollutants were estimated. The pilot plant was operated at steady state for about 10 weeks at an F/M of 0.28 and a sludge age of 8.4 days. The average MLSS concentration was 4,309mg/l, of which volatile fraction was 57%. During the operation period, the BOD removal reaction rate(k) was determined to be 8.2/day at $30^{\circ}C$. The BOD removal was 84 percent, which was 3 to 6 percent lower than expected for full-scale treatment. The chronic toxicity of the activated sludge effluent was tested by employing both Dinnel and the BML protocols. It was found that the pilot plant could achieve in excess of 90 percent reduction in chronic echinoderm toxicity. The data show slight reduction of color and AOX across the activated sludge system. The pilot system, however, demonstrated on excellent removal of resin and fatty acids.

  • PDF

Effects of Paper Sludge Addition on Formaldehyde Emission, and Physical and Mechanical Properties of UF-Particleboard (제지 슬러지의 첨가가 요소수지 파티클보드의 포름알데히드 방산 및 물리적, 기계적 성질에 미치는 영향)

  • Kim, Dae-Jun;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • This research was carried out to investigate the effect of paper sludge addition on formaldehyde emission, and physical and mechanical properties of UF-particleboard. In order to investigate the effect of paper sludge addition to resin, particleboards were bonded with urea-formaldehyde resins containing 5, 10, 15% paper sludge powders of three types(A Type: -200 mesh, B Type: -100~+200 mesh. C Type: -50~+100 mesh), based on weight of resin solid. Also the effect of paper sludge addition to furnish was studied from particleboards fabricated with ratios of sludge to particle of 5:95, 10:90, 15:85 based on oven-dry weight. Tests were conducted on the manufactured particleboards to determine formaldehyde emission, bending properties, internal bond strength and thickness swelling. The obtained results were summarized as follows: The addition of paper sludge powder to resin yielded a higher pH of cured resin. Formaldehyde emission decreased with the increase of paper sludge powder addition to resin and paper sludge composition ratio to furnish. Particleboard bonded with urea-formaldehyde resin containing paper sludge powder and particleboard mixed with paper sludge have similar bending properties(MOR, MOE) and thickness swelling compared with control particleboard. Internal bond strength of particleboards treated with paper sludge were lower than that of control particleboard. The use of paper sludge as scavenger was achieved reduction of formaldehyde emission without depression of physical and mechanical properties of particleboard. Also the use of paper sludge was able to concluded that there is possibility of partial substitution of wood particle materials.

  • PDF

Removal of EDCs from Industrial Sludge by Electron Beam

  • Han, Bumsoo;Kim, Jinkyu;Kim, Yuri;Jung, Seungtae;Park, Junhyung;Choi, Jangseung
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • Endocrine disrupting chemicals (EDCs) and potential EDCs are mostly man-made, found in various materials such as pesticides, additives or contaminants in food, and personal care products. The high energy ionizing radiation has the ability to remove the EDCs with a very high degree of reliability and in a clean and efficient manner. The ionizing radiation interacts with EDCs both directly and indirectly. Direct interaction takes place with EDCs and the structure of EDCs is destroyed or changed. During indirect interaction, radiolysis products of water result in the formation of highly reactive intermediates which then react with the target molecules, culminating in structural changes. To confirm the radiation reduction of EDCs in industrial sludge, a pilot scale experiment up to 50 kGy of electron beam (EB) was conducted with samples from the textile dyeing industries. The experimental result showed the over 90% of reduction of Nonylphenol (NP) and Di(2-ethylhexyl) phthalate (DEHP) at around 10 kGy of absorbed doses.

Comparative Analysis of Performance and Microbial Characteristics Between High-Solid and Low-Solid Anaerobic Digestion of Sewage Sludge Under Mesophilic Conditions

  • Lu, Qin;Yi, Jing;Yang, Dianhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.110-119
    • /
    • 2016
  • High-solid anaerobic digestion of sewage sludge achieves highly efficient volatile solid reduction, and production of volatile fatty acid (VFA) and methane compared with conventional low-solid anaerobic digestion. In this study, the potential mechanisms of the better performance in high-solid anaerobic digestion of sewage sludge were investigated by using 454 high-throughput pyrosequencing and real-time PCR to analyze the microbial characteristics in sewage sludge fermentation reactors. The results obtained by 454 highthroughput pyrosequencing revealed that the phyla Chloroflexi, Bacteroidetes, and Firmicutes were the dominant functional microorganisms in high-solid and low-solid anaerobic systems. Meanwhile, the real-time PCR assays showed that high-solid anaerobic digestion significantly increased the number of total bacteria, which enhanced the hydrolysis and acidification of sewage sludge. Further study indicated that the number of total archaea (dominated by Methanosarcina) in a high-solid anaerobic fermentation reactor was also higher than that in a low-solid reactor, resulting in higher VFA consumption and methane production. Hence, the increased key bacteria and methanogenic archaea involved in sewage sludge hydrolysis, acidification, and methanogenesis resulted in the better performance of high-solid anaerobic sewage sludge fermentation.

Sludge Solubilization using Microwave Irradiation in the Presence of Fe Powder

  • Yi, Min-Joo;Choi, Hyun-Kyung;Han, Ihn-Sup
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, microwave irradiation, which is reflected by metals, was used to reduce the amount of sewage sludge, and the results were used to verify solubilization efficiency and determine optimum operation conditions. Biogas production and methane content of the gas under optimized conditions were measured with the biochemical methane potential (BMP) test. The sludge was taken from a thickened sludge tank at J sewage treatment plant (JSTP) in Seoul, Korea. For the experiments, 50 mL of sludge was filled in vessels and the vessels were irradiated with the power of 500, 600, 700, and 800W for 2~5 min. In addition, Fe powder was added by 0.01, 0.05, and 0.1 g to compare the efficiency with and without Fe powder. The results confirmed that solubilization efficiency was higher in the presence of Fe powder. The optimum conditions of 0.01 g addition of Fe powder with 800W irradiation for 5 min, yielded nearly 22.95% higher solubilization efficiency than without Fe powder. The BMP tests were carried out using sludge obtained from the experiments carried out under the optimum conditions. As a result, sludge subjected by 800W with 0.01 g of Fe powder for 5 min displayed the highest level of gas production and methane content. Through this study, it could be confirmed that solubilization efficiency increased by addition of Fe powder.

Effects of Ultrasonic Pretreatment on Sludge Biodegradability (초음파 전처리에 의한 슬러지 생분해성 영향 평가)

  • Kim, Ju-Hyun;Lee, Kang-Hoon;Nguyen, Hai;Yeom, Ick-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.611-616
    • /
    • 2011
  • The impacts of ultrasonic pretreatment on the biodegradability of domestic sewage sludge were evaluated through a series of anaerobic digestion experiments in batch system. The gas and methane production from the sludge samples pretreated by an ultrasonic tool with different durations were measured with time. Although the biogas production increased with the extent of sludge solubilization and the period of ultrasonic pretreatment, the enhancement of sludge biodegradability was much more sensitive to the pretreatment for the relatively short periods. Most of the enhanced biodegradability by the pretreatment was appeared in the early stage of anaerobic digestion, less than 6 days. The maximum biogas production per day was observed between 4 to 6 days when the sludge was pretreated less than 10 minutes while it was obtained in the beginning for the sludge pretreated longer periods. The results suggest that the repeated alternation of low strength ultrasonic pretreatment and anaerobic digestion may be more effective than the combination of one time pretreatment for a relatively long period and following anaerobic digestion.

Study on the Expression Dehydration by Recycling of Paper Sludge (제지 슬러지 재활용에 의한 압착 탈수)

  • Cho Jun Hyung;Cho Jung Won
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.36 no.4 s.107
    • /
    • pp.77-82
    • /
    • 2004
  • Expression-deliquoring tests using three types of paper sludges (tissue, newsprint, and paperboard) as deliquoring agent were carried out in order to investigate the effects of sludge dosage and pressure on the expression-deliquoring of slurry. The addition of deli­quoring agent causes expression-deliquoring of slurry to be faster than would be the case without the deliquoring agent. In case of the tissue sludge, the highest compression rate was achieved when $5\%$ of deliquoring agent was added, while in cases of the news­print and the paperboard sludge, $7\%$. Compression rate was increased as pressure increases. Porosity was decreased as pressure increases. The lowest porosity was observed when $5\%$ of tissue sludge was added. When compared the weight of cake where deliquoring agent was not added and the weight of cake that was fastest expression-deliquoring, there was about $17.5\%$ of the weight reduction

Ultrasonically Enhanced Dewaterability of Fine Particles (초미립자 탈수성 증대를 위한 초음파 활용에 관한 연구)

  • Oh, Chul;Kim, Byoung-Il;Kim, Young-Uk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.313-320
    • /
    • 2002
  • In accordance with the need of developing a methodology for the sludge reduction, this study investigates the effect of sonication on the dewaterability of the sewage sludge. The investigation involves laboratory experiments of the sewage sludge from Yongin Waste Treatment Plant. The Laboratory tests were conducted under a broad range of conditions including energy levels of ultrasonic waves, time for the treatment, pH, and effect of polymers. The results of the study show that sonication enhances the dewaterability significantly The degree of enhancement varies with sonication power, treatment time, the amount of sludge treated. The effect of sonication on the temperature and pH of the test specimens seems not to be significant. The polymer can be useful to enhance the effectiveness of ultrasound treatment.

  • PDF

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.