• Title/Summary/Keyword: Sludge Drying

Search Result 91, Processing Time 0.024 seconds

A Study on the RDF making Process of Heat-dried Sludge from Cheonan by using Oil-drying Method (유중건조를 이용한 천안시 열건조물의 고형연료화 공정 연구)

  • Park, So-yeon;Kim, Sang-bin;Ha, Jin-wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.660-667
    • /
    • 2018
  • This study examined the optimal manufacturing conditions of RDF using heat-dried sludge from sewage treatment plant in Cheonan with the oil-drying method. The amounts of oil evaporation and oil drying of the heat-dried sludge were measured at different temperatures to evaluate the value of the product. The performance of the product was then measured using a calorimeter and TGA. In addition, the concentration of odor, NH3, H2S, and TVOC during drying was determined using a portable odor-meter. Ingredient analysis was performed by EDS. Considering mass-production, the oil to heat-dried sludge weight ratio was fixed to 4:1. At $130^{\circ}C$, only physical mixing occurred after the instantaneous drying of internal water. Considering the eco-friendly aspects, there was no significant difference in the drying efficiency between $160^{\circ}C$ and $190^{\circ}C$. Therefore, the optimal conditions were a drying temperature of $160^{\circ}C$ within 5 minutes. Finally, the RDF manufactured in this study and fuel used in the thermal power plants were compared. The calorific value was 4,449kcal/kg, the water content was 2% and the ash content was 34%, which is higher than the fuel of thermal power plants. Therefore, it is believed that coal energy as well as wood pellets can be replaced.

A study on the RDF(Refuse Derived Fuel) making process of Livestock manure sludge by oil-drying method (유중건조를 이용한 축산분뇨슬러지의 고형연료화 공정 연구)

  • Lee, Junho;Park, Soyeon;Lee, Kyeongho;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.294-301
    • /
    • 2017
  • In this study, we found the optimal manufacturing conditions of livestock manure sludge RDF with the oil-drying method. We performed oil evaporation, oil drying and pelletizing of the sludge to evaluate the value of the product (sludge RDF), and measured the performance of the product using calorimeter and PXRF equipment. Also, we conducted the calorie comparison test between sludge RDF manufactured in this study and wood RDF generally used in the field. Experimental results showed that 30g of the sludge treated by vegetable oil at $130^{\circ}C$ for 25 minutes were the optimal conditions to make the sludge RDF (considering the aspects of eco-friendly and mass production). The caloric value of the sludge RDF manufactured in this study was 5211kcal/kg which is higher than that of wood RDF used widely in the market. Finally, PXRF results showed sludge RDF contains no heavy metals with the exception of sulfur. Therefore, we recommend more study about the sulfur control process for future development of the industrial manufacturing process.

Effect of Microwave Irradiation and Chemical Conditioning for Dewatering Characteristics of Sludge (슬러지의 탈수 특성에 대한 마이크로파와 약품개량의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Wang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.732-738
    • /
    • 2005
  • The purpose of this study is the presentation of the proper microwave treatment conditions by means of the investigation of the effect of microwave irradiation on the dewaterability and dryability of sludge. For the improving of dewatering efficiency of sludge using the microwave, the proper time of microwave irradiation is very important. The dewatering efficiency of thickening sludge conditioned by microwave irradiation for proper time was considerably improved with reducing of capillary suction time from 52.3 sec to 30.8 sec, and the sludge conditioned by microwave irradiation had contained the moisture of 81.4% after that pressure filtrationed. The result of drying characteristics of dewatered sludge using the microwave irradiation and furnace heating, for drying of sludge to moisture of below 55%, microwave irradiation time was required 3 min, whereas, furnace heating was required 40 min at $105^{\circ}C$, 20 min at $170^{\circ}C$ and 9 min at $300^{\circ}C$, respectively. We certified that the drying of dewatered sludge using the microwave irradiation was effectively reduction of moisture of sludge compare to traditional heating method.

Characteristics of Low Calorific Value of Sewage Sludge by Drying Method (수직원통식 박막 건조방식에 의한 하수슬러지의 저위발열량 특성)

  • Mo, Jounggun;Lee, Kwangsung;Chung, Hanshik
    • Journal of Power System Engineering
    • /
    • v.21 no.5
    • /
    • pp.55-62
    • /
    • 2017
  • In this study, the water content and the low calorific value of the dried sludge are analyzed by using a vertical cylinder type indirect heating type dryer for evaluatation of energy source value. The vertical cylindrical thin film dryer was an Okadora Pilot Plant, and the dryer was indirect heating vertical thin film type. The internal standard consisted of 500 mm in diameter and 700 mm in height. In the drying experiment, 10 kg of dehydrated sewage sludge was added to the dryer and the total amount of the sludge was adjusted to 27 times by variable of the time, the number of revolutions and the steam temperature. The results of analysis of the 27th experiment component of the dried product showed that the average low calorific value of about 11.2 MJ/kg and the water content of 6%. This is satisfy the fuel use standard of the thermal power plant of the sludge.

A Study on the Drying and Carbonization of Sewage Sludge in Fluidized Bed Reactor (유동층 반응기에서 하수슬러지의 건조 및 탄화 특성에 관한 연구)

  • Choung, Young-Hean;Cho, Ki-Chul;Kang, Dong-Hyo;Kim, Yi-Kwang;Park, Chang-Woong;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.7
    • /
    • pp.746-751
    • /
    • 2006
  • In this study, drying and carbonization experiment was conducted in a fluidized bed reactor according to the variations in gas velocity, particle size, and reactor temperature. As a result, the weight loss rates of sludge by drying in the fixed bed and fluidized bed type dryer showed that drying in the fluidized bed was about 6 times faster than drying in the fixed bed, and the weight loss rates of sludge by carbonization in the fixed bed and fluidized bed type reactor showed that carbonization in the fluidized bed was about 4 times faster than drying in the fixed bed. This implies that carbonization in the fluidized bed was completed within 10 minutes. Although the amount of char decreased with the increase of carboniration temperature, the amount of char became similar at upper 873K. Also, the amount of char decreased with increasing gas velocity. Consequently, it could be efficient that slow fluidization should be maintained within the range of fluidization in case of fluidized carbonization of sewage sludge at 873K.

Durability and Strength Characteristics of Concrete Using Sludge Water above Specification (규정 이상의 회수수를 사용한 콘크리트의 내구성 및 강도 특성)

  • Yang, Eun-Ik;Park, Jin-Ho;Kim, Kang-Rea;Jo, Gyou-Jea
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.199-204
    • /
    • 2006
  • Recently, The sludge water of ready mixed concrete has been investigated because of environmental pollution and disposal cost. So, sludge water is partially reused as mixing water. However, if sludge water is reused too much that would influence the qualify of concrete. KS specification limits the amount of sludge content up to 3% of cement weight. In this study, the effect of ready mixed concrete sludge on the characteristics of concrete is compared to raise the reuse ratio of sludge of ready mixed concrete. According to this experiment results, as blending ratio of re-mi-con sludge increases, workability is decreases. However, the sludge of ready mixed concrete water have a positive effect on the strength development. The drying shrinkage and the resistance of freezing and thawing have a minor effect.

A Study on Drying and Carbonization of Organic Sludge from Sewage Plant and Petrochemical Industries for Energy and Resources Recovery (하수슬러지 및 석유화학산업단지 폐수슬러지의 에너지화와 재활용을 위한 건조 및 탄화에 관한 연구)

  • Jun, Kwan-Soo;Hwang, Eung-Ju;Kim, Hyung-Jin
    • Clean Technology
    • /
    • v.15 no.3
    • /
    • pp.154-164
    • /
    • 2009
  • In 2007, 94% of organic wastewater sludge from industries located in Ulsan was disposed of by ocean dump. The ocean dump of organic sludge would be totally prohibited by the year of 2012. However, there is no alternative but incinerating the sludge from the industries located in Ulsan. Securing the technology for sludge treatment and on-land disposal is very important issue among the industries in the Ulsan Petrochemical Industry Complex. In this study, the material aspects of dried and carbonized sludge as a fuel were evaluated for petrochemical and sewage sludge from Ulsan. The dried and carbonized sludges from the factories producing terephthalic acid, BTX, propylene, chemical textile, etc. of which the low heat value exceeded 3,000 kcal/kg had high potential as a fuel according to the results of thermal characteristic analysis. However, the dried sludges with heat values lower than 2,100 kcal/kg and carbonized sludges, lower than 1,100 kcal/kg containing more Inorganic material from the industries producing pulp, paper, methylamine, amide, etc. had a little potential to be used as a fuel. In most cases, drying the sludge showed better results than carbonization in the aspect of thermal characteristics of sludge.

Incineration of Waste Water Sludge and Coal In a Circulating Fluidized Bed Combustor (순환유동층에서 폐수슬러지와 석탄의 혼소 특성)

  • Bae, Dal-Hee;Shun, Do-Won;Park, Jae-Hyeon;Ryu, Ho-Jung;Park, Do-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.165-172
    • /
    • 2004
  • Co-incineration of coal and wastewater sludge was r;erfonn:rl in a O.lMWth bench scale circulating fluidized bed combustor(CFBC) Sludge was received from a wastewater treatment plant in a dye industrial complex in Busan. Metropolis. Moisture content of received sludge was 80%. Coal and sludge mixture was prepared with weight ratio of 90/10, 85/15 and 80/20. Co-combustion characteristics of the coal and sludge mixture demonstrated stable combustion conditions. Component analysis, incineration characteristics, boiler performance was measured before and after the test and application for commercial 59MWth CFBC boiler. The release of hazardous components such as $SO_2$ and Cl was suppressed by the presence of inherent minerals of Ca, Na, K in coal and sludge mixture. Pre-drying was not essential but it was recommended for the benefits of manageability of sludge.

  • PDF

A Study on Sewage Sludge Treatment by Vacuum Drying Method (감압건조법(減壓乾燥法)을 이용(利用)한 하수(下水)슬러지처리(處理))

  • Jang, Seong-Ho;Park, Jin-Sick;Kim, Soo-Saeng
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.6 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • This study was to experiment, through sewage sludge treatment by Vacuum Drying Method, variation of water content with reaction pressure, reaction time, reaction temperature. The result are as follows; The water content decreased with the same reaction temperature and reaction time at lower pressure and 360~40 mmHg (a close vacuum) showed lower water content at low reaction temperature and short reaction time. The water content rapidly decreased with the same reaction pressure and time at low reaction temperature (above $120^{\circ}C$).

  • PDF

Recovery of Petroleum Hydrocarbons from Oily Sludge Landfilled Soil

  • Shin, Su-Yeon;Park, Sang-Min;Ko, Sung-Hwan;Jung, Hong-Bae;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.41-46
    • /
    • 2015
  • Three types of experiments, based on the physical properties of oily sludge landfilled soil, were conducted to recover total petroleum hydrocarbons (TPH) from the soil. These experiments included gravity separation, solvent extraction using water, and air floatation. The oil portion was not easily separated from the wet (raw) soil because water molecules aggregate the soil particles, despite the fact that the soil was sandy. However, the drying and grinding processes destroyed the aggregates, causing the TPH recovery to increase to approximately 60% when air floatation was used. The drying process decreased the specific gravity of the soil sample, thereby enhancing the overall recovery of TPH from the soil. Although thermal desorption and/or incineration are common choices for heavily dumped sites, physical separation can recover the oil portion instead of simply removing it.