• Title/Summary/Keyword: Slow processes

Search Result 158, Processing Time 0.023 seconds

The Effect of Heavy Metal Content on the Decomposition of Plant Litter in the Abandoned Mine (폐광지 분포 식물 낙엽의 분해에 미치는 중금속의 영향)

  • Shim, Jae-Kuk;Son, Ji-Hoi;Shin, Jin-Ho;Yang, Keum-Chul
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.3
    • /
    • pp.279-285
    • /
    • 2010
  • This study was conducted to evaluate the differences between the heavy metal contaminated and non-contaminated Artemisia princeps var. orientalis and Equisetum arvense in litter decomposition processes. The plant samples were collected from abandoned mine tailings and control sites in Cheongyang, South Korea. The abandoned mine tailings have high heavy metal concentration and low soil organic matter contents. The heavy metal contents of mine tailings were about 13 and 28 times higher in As and Cd, compared to those in control soils. Also, the contents of the Cr, Ni and Zn in mine tailings were about 3 to 6 times higher than those in control soil. Samples of two plant species from mine tailings have high heavy metal concentrations compared to those from control sites. The leaf of A. princeps var. orientalis and shoot of E. arvense collected from mine tailings have approximately 23 and 58 times more in As, and 25 and 11 times more in Cd. The mass loss rates of plant litter from mine tailings were slower than those from control sites. During the experimental period, the decomposition of A. princeps var. orientalis leaf from mine tailings and control site showed 50.4% and 65.7% mass loss on the control soil area, respectively. The decomposition of A princeps var. orientalis leaf from mine tailings and control site showed 31.6% and 57.5% mass loss on the mine tailings area, respectively. The decomposition of A. princeps var. orientalis stem from mine tailings and control site showed similar patterns with their leaf decomposition. The decomposition of E. arvense shoot from mine tailings and control site showed 77.8% and 89.3% mass loss on the control soil area, respectively. The decomposition of E. arvense shoot from mine tailings and control site showed 67.6% and 82.1% mass loss on the mine tailings area, respectively. Therefor, the higher contents of heavy metals showed slow decomposition. The results suggested that heavy metal contamination affected the plant litter decomposition processes.

Efficient Remediation of Petroleum Hydrocarbon-Contaminated Soils through Sequential Fenton Oxidation and Biological Treatment Processes (펜톤산화 및 생물학적 연속처리를 통한 유류오염토양의 효율적 처리)

  • Bae, Jae-Sang;Kim, Jong-Hyang;Choi, Jung-Hye;Ekpeghere, Kalu I.;Kim, Soo-Gon;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.356-363
    • /
    • 2011
  • The accidental releases of total petroleum hydrocarbons (TPH) due to oil spills frequently ended up with soil and ground water pollution. TPH may be degraded through physicochemical and biological processes in the environment but with relatively slow rates. In this study an attempt has been made to develop an integrated chemical and biological treatment technology in order to establish an efficient and environment-friendly restoration technology for the TPH contaminated soils. A Fenton-like reaction was employed as a preceding chemical treatment process and a bioaugmentation process utilizing a diesel fuel degrader consortium was subsequently applied as a biological treatment process. An efficient chemical removal of TPH from soils occurred when the surfactant OP-10S (0.05%) and oxidants ($FeSO_4$ 4%, and $H_2O_2$ 5%) were used. Bioaugmentation of the degrader consortium into the soil slurry led to an increase in their population density at least two orders of magnitude, indicating a good survival of the degradative populations in the contaminated soils ($10^8-10^9$ CFU/g slurry). TPH removal efficiencies for the Fenton-treated soils increased by at least 57% when the soils were subjected to bioaugmentation of the degradative consortium. However, relatively lower TPH treatment efficiencies (79-83%) have been observed in the soils treated with Fenton and the degraders as opposed to the control (95%) that was left with no treatment. This appeared to be due to the presence of free radicals and other oxidative products generated during the Fenton treatment which might inhibit their degradation activity. The findings in this study will contribute to development of efficient bioremediation treatment technologies for TPH-contaminated soils and sediments in the environment.

Studies for CO2 Sequestration Using Cement Paste and Formation of Carbonate Minerals (시멘트 풀을 이용한 CO2 포집과 탄산염광물의 생성에 관한 연구)

  • Choi, Younghun;Hwang, Jinyeon;Lee, Hyomin;Oh, Jiho;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • Waste cement generated from recycling processes of waste concrete is a potential raw material for mineral carbonation. For the $CO_2$ sequestration utilizing waste cement, this study was conducted to obtain basic information on the aqueous carbonation methods and the characteristics of carbonate mineral formation. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. Leaching tests using two additives (NaCl and $MgCl_2$) and two aqueous carbonation experiments (direct and indirect aqueous carbonation) were conducted. The maximum leaching of $Ca^{2+}$ ion was occurred at 1.0 M NaCl and 0.5 M $MgCl_2$ solution rather than higher tested concentration. The concentration of extracted $Ca^{2+}$ ion in $MgCl_2$ solution was more than 10 times greater than in NaCl solution. Portlandite ($Ca(OH)_2$) was completely changed to carbonate minerals in the fine cement paste (< 0.15 mm) within one hour and the carbonation of CSH (calcium silicate hydrate) was also progressed by direct aqueous carbonation method. The both additives, however, were not highly effective in direct aqueous carbonation method. 100% pure calcite minerals were formed by indirect carbonation method with NaCl and $MgCl_2$ additives. pH control using alkaline solution was important for the carbonation in the leaching solution produced from $MgCl_2$ additive and carbonation rate was slow due to the effect of $Mg^{2+}$ ions in solution. The type and crystallinity of calcium carbonate mineral were affected by aqueous carbonation method and additive type.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Effect of Water Temperature on the Growth of Triops longicaudatus (LeConte) (Notostraca: Triopsidae) (수온이 긴꼬리투구새우(배갑목: 투구새우과)의 생장에 미치는 영향)

  • Kwon, Soon-Jik;Jun, Yung-Chul;Park, Jae-Heung;Won, Doo-Hee;Seo, Eul-Won;Lee, Jong-Eun
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1662-1666
    • /
    • 2010
  • Growth and other biological processes in aquatic organisms are particularly dependent on water temperatures. This study examined the effects of water temperature on the growth of Triops longicaudatus. The influence of water temperature fluctuations was that growth rate was increased at higher temperatures. The mean carapace length was 5.7 (${\pm}2.1$) mm in a water temperature of $20^{\circ}C$ and 7.5 (${\pm}0.5$) mm in a water temperature of $28^{\circ}C$ on the 14th day after submergence. It was 6.9 (${\pm}2.8$) mm in a water temperature of $20^{\circ}C$ and 7.8 (${\pm}2.0$) mm in a water temperature of $28^{\circ}C$ on the 21st day after submergence. The mean carapace length grew rapidly within 14 days after submergence, but increase in carapace length beyond this time was slow. The influence of water depth fluctuations was low as the mean carapace length was 9.3 (${\pm}2.1$) mm under a water depth of 80 mm and 9.5 (${\pm}1.3$) mm under a water depth of 190 mm on the 19th day after submergence. Biomass showed that the carapace length of 5, 10, 16 and 20 mm was a dry-weight of 1.1 (${\pm}0.3$), 18.0 (${\pm}3.7$), 26.0 (${\pm}0.0$) and 52.3 (${\pm}4.0$) mg respectively. The number of eggs increased rapidly with increments in carapace length. The mean number of eggs was 20 (${\pm}0.0$) at a carapace length of 7.0 mm, but at a carapace length of 17.0 mm, the mean number of eggs was 560 (${\pm}0.0$). The results suggested that differences in water temperature accounted for the differences in length of the carapace and the number of eggs.

MODULATION OF INTRACELLULAR pH BY $Na^+/H^+$ EXCHANGER AND $HCO_3^-$ TRANSPORTER IN SALIVARY ACINAR CELLS ($Na^+/H^+$ exchanger와 $HCO_3^-$ transporter에 의한 흰쥐 타액선 선세포내 pH 조절)

  • Park, Dong-Bum;Seo, Jeong-Taeg;Sohn, Heung-Kyu;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.352-367
    • /
    • 1998
  • Intracellular pH (pHi) plays an important role in the regulation of cellular processes by influencing the acitivity of various enzymes in cells. Therefore, almost every type of mammalian cell possesses an ability to regulate its pHi. One of the most prominent mechanisms in the regulation of pHi is $Na^+/H^+$ exchanger. This exchanger has been known to be activated when cells are stimulated by the binding of agonist to the muscarinic receptors. Therefore, the aims of this study were to compare the rates of $H^+$ extrusion through $Na^+/H^+$ exchanger before and during muscarinic stimulation and to investigate the possible existence of $HCO_3^-$ transporter which is responsible for the continuous supply of $HCO_3^-$ ion to saliva. Acinar cells were isolated from the rat mandibular salivary glands and loaded with pH-sensitive fluoroprobe, 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein(BCECF), for 30min at room temperature. Cells were attached onto the coverglass in the perfusion chamber and the changes in pHi were measured on the iverted microscope using spectrofluorometer. 1. By switching the perfusate from $HCO_3^-$-free to $HCO_3^-$-buffered solution, pHi decreased by $0.39{\pm}0.02$ pH units followed by a slow increase at an initial rate of $0.04{\pm}0.007$ pH units/min. The rate of pHi increase was reduced to $0.01{\pm}0.002$ pH units/min by the simultaneous addition of 1 mM amiloride and $100{\mu}M$ DIDS. 2. An addition and removal of $NH_4^+$ caused a decrease in pHi which was followed by an increase in pHi. The increase of pHi was almost completely blocked by 1mM amiloride in $HCO_3^-$-free perfusate which implied that the pHi increase was entired dependent on the activation of $Na^+/H^+$ exchanger in $HCO_3^-$-free condition. 3. An addition of $10{\mu}M$ carbachol increased the initial rate of pHi recovery from $0.16{\pm}0.01$ pH units/min to $0.28{\pm}0.03pH$ units/min. 4. The initial rate of pHi decrease induced by 1mM amiloride was also increased by the exposure of the acinar cells to $10{\mu}M$ carbachol ($0.06{\pm}0.008pH$ unit/min) compared with that obtained before carbachol stimulation ($0.03{\pm}0.004pH$ unit/min). 5. The intracellular buffering capacity ${\beta}1$ was $14.31{\pm}1.82$ at pHi 7.2-7.4 and ${\beta}1$ increased as pHi decreased. 6. The rate of $H^+$ extrusion through $Na^+/H^+$ exchanger was greatly enhanced by the stimulation of the cells with $10{\mu}M$ carbachol and there was an alkaline shift in the activity of the exchanger. 7. An intrusion mechanism of $HCO_3^-$ was identified in rat mandibular salivary acinar cells. Taken all together, I observed 3-fold increase in $Na^+/H^+$ exchanger by the stimulation of the acinar cells with $10{\mu}M$ carbachol at pH 7.25. In addition, I have found an additional mechanism for the regulation of pHi which transported $HCO_3^-$ into the cells.

  • PDF

The Manufacturing Techniques of the Stone Standing Maitreya Bodhisattva Bronze Wind Chimes of Gwanchoksa Temple, Nonsan (자연과학적 분석을 통한 논산 관촉사 석조미륵보살입상(論山 灌燭寺 石造彌勒菩薩立像) 청동풍탁(靑銅風鐸)의 제작 기법 연구)

  • LEE, Soyeon;CHUNG, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.2
    • /
    • pp.22-37
    • /
    • 2021
  • The wind chime is a longstanding Jangeomgu (majestic article) found in Korea, China, and Japan. However, basic research on wind chimes is currently inadequate as it is difficult to estimate the time of production, and there are few relics. Therefore, this research morphologically classifies the eight bronze wind chimes decorating the baldachin of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan. Based on this, the manufacturing techniques and production period are scientifically demonstrated. The synthesis of the research results reveals that the structure and characteristics of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan differ depending on their location on the baldachin. The four large-sized wind chimes on the lower-baldachin were manufactured by casting a Cu-Sn-Pb alloy, and they are estimated to have been made during the early period of Goryeo. The two medium-sized wind chimes of the upper-baldachin's northern direction were manufactured through forging a Cu-Sn or Cu-Sn-Pb alloy, and they appear to have a similar structure to the cylindrical wind chimes appearing during the latter period of Goryeo and the Joseon period. The two small-sized wind chimes of the upper-baldachin's southern direction were manufactured by casting a Cu-Sn-Pb alloy containing Zn, and based on the chemical composition of the alloy and the shape of the clapper, they are estimated to have been manufactured during the latter period of Joseon. Through the observation of microstructures and a chemical composition analysis, it is demonstrated that two wind chimes of the lowerbaldachin were manufactured by casting and slow cooling the alloy with an alloy ratio of Cu:Sn:Pb≒80:15:5. In addition, it is estimated that the wind chimes of the upper-baldachin's northeast direction were manufactured by forging an alloy of Cu-Sn with a similar alloy ratio to that of forged high tin bronze. The results of a comparative analysis of prior research on domestic wind chimes confirm that two wind chimes of the lower-baldachin have a similar composition ratio to the wind chime excavated from Wolnamsaji in Gangjin, containing an amount of tin that corresponds with ancient records. Having a similar alloy ratio to forged high tin bronze, the wind chimes of the upper-baldachin's northeast direction are the only instances among all of the wind chimes that have been examined to date that were manufactured using this forging method. The purpose of this research is to collect baseline data to verify and classify the manufacturing period of wind chimes according to their morphological characteristics based on scientific evidence. It is hoped that this data can be utilized for the restoration and conservation processes of the wind chimes of the Stone Standing Maitreya Bodhisattva of Gwanchoksa Temple, Nonsan.

A review on the transmission aspect of Sangjwa chum and Omjung chum in Yangju Byeolsandae Nori (양주별산대놀이 상좌·옴중춤의 전승양상 고찰)

  • Park, In-Soo;Kim, Ji-Hoon
    • (The) Research of the performance art and culture
    • /
    • no.41
    • /
    • pp.285-320
    • /
    • 2020
  • This study aims to examine the processes of changes of the two main roles, Sangjwa(the young Buddist monk) chum and Omjung(the monk with a boil on his face) chum, performed in Yangju Byeolsandae Nori, on the basis of Chumsawi (dance-movement). Above all, having studied many artistic remains performed by Jo jong sun, Jung han gyu, Park jun seup, Kim sung tae from 1929 to 1942, two main roles, in which Geodeureum chum is now an essential part in almost all performances, were then played only in Kkaekki chum to Taryong Jangdan without performances of Geodeureum chum. In case of Sangjwa chum, players had performed ad libitum and without restraint only on the basis of five sorts of Kkaekki chum's movements. In Omjung chum, witty remarks along with the drama had become more important factors than dances. Let alone two main roles, other parts then also showed no big changes in dance performance. Performers just tried to maintain its slender existence within stifling atmosphere because of oppressions and restraints during the Japanese imperialism. After the restoration of independence in 1945, Kim sung tae and his disciples made a great effort on the restoration of Talnori. During the Korean war, many players also endeavored to keep a good track of Talnori, teaching and training their young followers. Especially performers such as Park jun seup, Park sang hwan, Kim sung tae, and Lee jang sun put much more efforts on restoring Talnori. From that time, Geodeureum chum began to appear in two main roles' performances. In Sangjwa's performances, Byeogsa ritual dance, which was performed to Taryong Jangdan, changed into performances to Yeombul Jangdan, and Kkaekki chum -originally slow and ritual dance, became very fast and active one. Geodeureum chum, called Yongteulim, was added in Omjung chum, so that dance had more important role in performance. Even at this time, dance movements were not clearly and completely organized and arranged, because Geodeureum chum's performance was not clearly defined as orderly dance movements but was regarded as just a movement. After Geodeureum chum being designated as a cultural treasure, Lee byeong kwon took over the task from Park sang hwan, Sangjwa chum's performer, so Geodeureum chum became much more well organzied, arranged and orderly. Geodeureum chum played by Sangjwa had almost the same order of scenes and movements as Geodeureum chum played by Yeonnip. Based on this performance, the order of dances and movements was consistently arranged and settled. Following Park jun seup's performances, Jangsam was more widely applied and used in Omjung chum than ever before, so Omjung chum became much more organized and arranged. Well-arranged Omjung chum had also almost the same dances and movements as Nojang chum's. Yeonnip and Nojang's performances were not directly and intentionally studied and applied to two main roles in Yangju Byeolsandae Nori. Players seemed to borrow those parts naturally through many times of performances. Through their persistent efforts, Jangdan and dance movements have more clearly and completely been organized, establied, and improved through many years' performances. And dance movement can be performed exactly to Jangdan, so we have more complete and orderly types of dance movements. Thanks to many performers' efforts, Sangjwa chum has been established as one that only top performer can play, and Omjung chum has become an integral part in Yangju Byeolsandae Nori.