• Title/Summary/Keyword: Slow motion

Search Result 205, Processing Time 0.026 seconds

Effects of walking speed on peak plantar pressure in healthy subjects (정상인에서 보행 속도가 발바닥의 최대압력분포에 미치는 영향)

  • Ha, Mi-Sook;Nam, Kun-Woo
    • Journal of Korean Physical Therapy Science
    • /
    • v.22 no.2
    • /
    • pp.43-47
    • /
    • 2015
  • Background : Many factors affect foot and ankle biomechanics during walking, including gait speed and anthropometric characteristics. This study examined the effect of walking speed on peak plantar pressure during the walking. Method : Thirty two normal healthy subjects (16 men, 16 women) were recruited. Peak plantar pressure was investigated using pressure distribution platforms (Pedoscan system) under the hallux heads of the first, second, and third metatarsal bones, and heel. Result : The results also suggest that slow walking speeds may decrease forefoot peak plantar pressure in patients with peripheral neuropathy who have a high risk of skin breakdown under the forefoot(p<0.05). Conclusion : The results also suggest that slow walking speeds may decrease forefoot peak plantar pressure in patients with restricted low extremity range of motion who have a high risk of skin breakdown under the forefoot.

  • PDF

Theoretical observation of waves in cancellous bone

  • Yoon, Young-June;Chung, Jae-Pil
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.419-424
    • /
    • 2020
  • Poroelasticity theory has been widely used for detecting cancellous bone deterioration because of the safe use for humans. The tortuosity itself is an important indicator for ultrasound detection for bone diseases. The transport properties of cancellous bone are also important in bone mechanotransduction. In this paper, two important factors, the wave velocity and attenuation are examined for permeability (or tortuosity). The theoretical calculation for the relationship between the wave velocity (and attenuation) and permeability (or tortuosity) for cancellous bone is shown in this study. It is found that the wave along the solid phase (trabecular struts) is influenced not by tortuosity, but the wave along the fluid wave (bone fluid phase) is affected by tortuosity significantly. However, the attenuation is different that the attenuation of a fast wave has less influence than that of a slow wave because the slow wave is observed by the relative motion between the solid and fluid phases.

Effects of Running Speed on the Foot Segments Motion at the Stance Phase (달리기 시 속도 증감에 따른 지지국면에서 발 분절 움직임 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.35-42
    • /
    • 2012
  • The aim of the present study was to investigate effect of running speed conditions on the kinematic pattern of the metatarsus, mid-foot, calcaneus. Twenty-two healthy young adults were made to run on treadmill at three different running speeds(normal speed, 9.2; slow speed, 7.4; fast speed, 11.1km/hr.) and the trajectories of the 10 reflective markers for each subject were recorded by an eight-camera motion capture system at 200 Hz. Three-dimensional angles for the foot segment in the support phase during running were calculated according to Euler's technique. Results showed that running speed did not affect the peak of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction or their range of motion for each foot segment. However, when the running speed was fast, significant differences were found in the peak of the plantar flexion, eversion, and adduction and ROM(range of motion) of the dorsi/plantar flexion, inversion/eversion, and adduction/abduction between the foot segments, metatarsus, mid-foot, and calcaneus. It was proposed that the foot segment should be analyzed from a multi-segment system point of view on the basis of anatomical reference during locomotion.

Diadochokinetic Characteristics in the Subjects with Spastic Cerebral Palsy by Severity: In Terms of Rate, Regularity, Accuracy and Consistency (심한 정도에 따른 경직형 뇌성마비 대상자의 교호운동 특성: 속도, 규칙성, 정확성, 일관성을 중심으로)

  • Nam Hyun-Wook;Ahn Jong-Bok;Kwon Do-Ha
    • MALSORI
    • /
    • no.58
    • /
    • pp.1-18
    • /
    • 2006
  • The purpose of this study was to investigate diadochokinetic (DDK) characteristics in the subjects with spastic cerebral palsy (CP) by severity. DDK characteristics were measured through rate, regularity, accuracy and consistency in Alternate Motion rate (AMR) and Sequential Motion rate (SMR) tasks. The subjects participated in this study included 27 subjects with spastic CP (mild- 9, moderate- 9, severe- 9) and 9 normal persons who are around 11-20 years old. On the result of this study, rate in AMR was significant difference between all spastic groups and normal group, and rate in SMR was significant difference between normal and mild groups and moderate and severe groups. In regularity of the DDK tasks, severe group had significant difference the other groups. Finally, accuracy and consistency of the DDK tasks exhibited significant difference between all spastic groups and normal group. In conclusion, the subjects with spastic CP have a tendency to produce slow and irregular syllable repetition as severity increases, but to produce inaccurate and inconsistent syllable repetition regardless of severity in the DDK tasks.

  • PDF

Overview of Motion-to-Photon Latency Reduction for Mitigating VR Sickness

  • Ryu, Yeongil;Ryu, Eun-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2531-2546
    • /
    • 2021
  • For several years, virtual reality (VR) and augmented reality (AR) technologies have been improving. However, some hurdles remain that slow down the distribution of VR and AR devices, such as head-mounted display (HMD), and related consumer content. One issue is VR motion sickness, which has been experienced by users using 360 degree VR content via HMD. This paper discusses the related international standardization work that classifies the factors causing VR sickness, and proposes the process for VR sickness level evaluation. Among the factors causing VR sickness, many research institutes regard minimizing MTP (Motion-to-Photon) latency as the key enabler to mitigate VR sickness. Thus, this paper introduces research trends of MTP latency measurement and MTP latency mitigation. This paper categorizes the research on MTP latency measurement into 2 categories of hardware-based approach and software code-level approach. The 2 approaches have different pros and cons depending on use-case, purpose, and architecture of each multimedia system. The pros and cons are addressed in this paper. Additionally, the research on mitigating MTP latency with diverse strategies such as proactive computing, caching, and edge server technology is explained, and compared to conventional technologies, shows improved performance.

Longitudinal Motion Planning Strategy for Autonomous Driving in Non-signalized Crosswalk (비신호 횡단보도 환경 내 자율주행을 위한 종방향 거동 전략 연구)

  • Youngmin Yoon;Sangyoon Kim;Changhee Kim;Jinsoo Michael Yoo;Jongcherl Park;Kyongsu Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.2
    • /
    • pp.6-13
    • /
    • 2024
  • This paper presents a method of longitudinal motion planning of autonomous vehicles to deal with the non-signalized crosswalk environment. Based on the traffic laws, vehicles should slow down when passing the non-signalized crosswalk to prepare for situations where a nearby pedestrian starts to cross. If a pedestrian is in the crossing phase, vehicles should stop in front of the stop-line and wait until the pedestrian finishes the crossing maneuver. To realize these behaviors in autonomous vehicles, the driving mode and corresponding driving strategy are determined when vehicles encounter the crosswalk. The driving mode is determined according to the behavioral status of the nearby pedestrian. Longitudinal motion for the stopping or passing maneuver is planned according to the determined driving mode. The proposed algorithm has been validated via autonomous driving tests with our test vehicle in a real world. The test results show that the proposed algorithm enables the test vehicle to follow the traffic laws and behave safely against crossing pedestrians in the non-signalized crosswalk.

Assessment of Gait Ability of Subjects With Chronic Ankle Instability During an Inter-trial Variability Gait Task According to Changes in Gait Speed

  • Jeonghan Kwon;Jongduk Choi
    • Physical Therapy Korea
    • /
    • v.30 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Background: Ankle sprains occur frequently among humans who undertake various body movements. Diverse walking environments and dual tasks, that can affect ankle sprains, have been studied. However, there is a lack of research on inter-trial variability according to the changes in gait speed. Objects: The purpose of this study was to compare the adaptive ability of walking between the subjects with chronic ankle instability and healthy adults while performing a walking task with different walking speeds. Methods: In this study, 24 people in the chronic ankle instability group and 24 people in the healthy ankle group were selected as subjects. The length of the pre-measurement and the actual walking measurement were both set to 4.6 m. Once the subjects entered the measurement section, they changed their gait speed according to the randomly assigned speed change. Gait was measured twice and the average value was used for the analysis. Results: The coefficient of variation (CV) of cycle time in subjects with chronic ankle instability showed a significant difference in all cases except when the subjects changed their speed from preferred to slow and from slow to preferred. The CV of step length demonstrated a significant difference in all cases except for the change from slow to preferred and from preferred to fast. The cycle time and step length differential showed a significant difference only when the subjects changed the speed from slow to fast. Conclusion: The subjects with chronic ankle instability were found to have significantly reduced walking adaptability while performing inter-trial variability tasks with different gait speeds compared to healthy subjects.

Extraction of Motion Parameters using Acceleration Sensors

  • Lee, Yong-Hee;Lee, Kang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.33-39
    • /
    • 2019
  • In this paper, we propose a parametric model for analyzing the motion information obtained from the acceleration sensors to measure the activity of the human body. The motion of the upper body and the lower body does not occur at the same time, and the motion analysis method using a single motion sensor involves a lot of errors. In this study, the 3-axis accelerometer is attached to the arms and legs, the body's activity data are measured, the momentum of the arms and legs are calculated for each channel, and the linear predictive coefficient is obtained for each channel. The periodicity of the upper body and the lower body is determined by analyzing the correlation between the channels. The linear predictive coefficient and the periodic value are used as data to measure the type of exercise and the amount of exercise. In the proposed method, we measured four types of movements such as walking, stair climbing, slow hill climbing, and fast hill descending. In order to verify the usefulness of the parameters, the recognition results are presented using the linear predictive coefficient and the periodic value for each motion as the neural network input.

Visual Control of Mobile Robots Using Multisensor Fusion System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.91.4-91
    • /
    • 2001
  • In this paper, a development of the sensor fusion algorithm for a visual control of mobile robot is presented. The output data from the visual sensor include a time-lag due to the image processing computation. The sampling rate of the visual sensor is considerably low so that it should be used with other sensors to control fast motion. The main purpose of this paper is to develop a method which constitutes a sensor fusion system to give the optimal state estimates. The proposed sensor fusion system combines the visual sensor and inertial sensor using a modified Kalman filter. A kind of multi-rate Kalman filter which treats the slow sampling rate ...

  • PDF

PI end-point control of the compliant robot manipulator (유연성을 갖는 로보트 매니퓰레이터의 PI end-point제어)

  • 정구진;배준경;김승록;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.200-205
    • /
    • 1989
  • The performance of conventional robot arms is inhibited by trade-off between speed and accuracy. Because these systems measure only joint angles, in spite of slow speed, they must rely on a stiff structure in order to attain positioning accuracy. Lightweight links would allow faster motion, but their flexibility would also produce positioning errors. This research is involved with the development and evaluation of an End-point Control System whose major goal is to compensate for link deflections and thus mitigate the speed versus accuracy conflict in conventional manipulator.

  • PDF