• Title/Summary/Keyword: Slow Motion

Search Result 206, Processing Time 0.022 seconds

Molecular Dynamics Simulation Studies of Zeolite A. Ⅵ. Vibrational Motion of Non-Rigid Zeolite-A Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.422-428
    • /
    • 1998
  • In the present paper, we report a molecular dynamics (MD) simulation of non-rigid zeolite-A framework only as the base case for a consistent study of the role of intraframework interaction on several zeolite-A systems using the same technique in our previous studies of rigid zeolite-A frameworks. Usual bond stretching, bond angle bending, torsional rotational, and non-bonded Lennard-Jones and electrostatic interactions are considered as intraframework interaction potentials. The comparison of experimental and calculated structural parameters confirms the validity of our MD simulation for zeolite-A framework. The radial distribution functions of non-rigid zeolite-A framework atoms characterize the vibrational motion of the framework atoms. Mean square displacements are all periodic with a short period of 0.08 ps and a slow change in the amplitude of the vibration with a long period of 0.53 ps. The displacement auto-correlation (DAC) and neighbor-correlation (DNC) functions describe the up-and-down motion of the framework atoms from the center of α-cage and the back-and-forth motion on each ring window from the center of each window. The DAC and DNC functions of the framework atoms from the center of α-cage at the 8-ring windows have the same period of the up-and-down motion, but those functions from the center of 8-ring window at the 8-ring windows are of different periods of the back-and-forth motion.

Nonlinear Motion Responses of a Moored Ship beside Quay (안벽에 계류된 선박의 비선형 운동응답)

  • 이호영;임춘규;유재문;전인식
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2003
  • When a typoon sets into harbour, a moored ship shows erratic motions and even mooring line failure may occur. such troubles may be caused by harbour resonance phenomena, resulting in large motion amplitudes at low frequency, which is close ti the natural frequency of th moored ship. The nonlinear motions of a ship moored to quay are simulated under external forces due to wave, current including mooring forces in time domain. The forces due to waves are obtained from source and dipole distribution method in the frequency domain. The current forces are calculated by using slow motion maneuvering equation in the horizontal plane. The wind forces are calculated from the empirical formula of ABS and the mooring forces of ropes and fenders are modeled as linear spring.

Adaptive Keyframe and ROI selection for Real-time Video Stabilization (실시간 영상 안정화를 위한 키프레임과 관심영역 선정)

  • Bae, Ju-Han;Hwang, Young-Bae;Choi, Byung-Ho;Chon, Je-Youl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.288-291
    • /
    • 2011
  • Video stabilization is an important image enhancement widely used in surveillance system in order to improve recognition performance. Most previous methods calculate inter-frame homography to estimate global motion. These methods are relatively slow and suffer from significant depth variations or multiple moving object. In this paper, we propose a fast and practical approach for video stabilization that selects the most reliable key frame as a reference frame to a current frame. We use optical flow to estimate global motion within an adaptively selected region of interest in static camera environment. Optimal global motion is found by probabilistic voting in the space of optical flow. Experiments show that our method can perform real-time video stabilization validated by stabilized images and remarkable reduction of mean color difference between stabilized frames.

  • PDF

A Study on the Deck Wetness of the FPSO (원유 생산.저장.하역선의 갑판침수에 관한 연구)

  • 임춘규;이호영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.8-14
    • /
    • 2004
  • As the number of offshore structure is glowing in deep waters, there have been increased damages of it. These floating structures in offshore locations exposed to harsh environmental conditions. In recent years, there has been a slowing attention around damages on bow and deck on FPSO caused by waves in steep storm condition. This paper describes a study of the water on deck due to the dynamic behavior of a FPSO with turret mooring system. The nonlinear motions of the FPSO are simulated under external forces due to wave, current, wind, and mooring forces in the time domain. The direct integration method is employed to estimate low frequency drift wave forces. The current forces are calculated by using slow motion maneuvering equations in the horizontal plane. The coefficients of a model for wind forces are calculated from Isherwood's experimental data and the variation of wind speed is estimated by wind spectrum according to the guidelines of API-RP2A.

A Study on the Wave Drift Damping of a Moored Ship in Waves (파랑중 계류된 선박의 표류감쇠에 관한 연구)

  • 이호영;박홍식;신현경
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • As the offshore oil fields are moved to the deep ocean, the oil production system of FPSO(Floating Production Storage and Offloading System) Type are constructed frequently these days. So, it is very important to estimate the drift motion and damping effects due to the drift motion simultaneously. The components of slow drift motion damping consist of viscous, wave radiation effect and wave drift damping. It is needed to estimate the wave drift damping more accurately than others. The wave drift damping signifies the time-rate of mean wave drift force on oscillating ship or ocean structure which constant speed. In order to calculate this, the 3-Dimensional panel method is employed with the translating and pulsating Green function in the frequency domain. The calculation is carried out for a Series 60 ($C_B$/=0.7) and the results are compared with other numerical ones.

  • PDF

Crustal Movement at Ol Doinyo Lengai based on GPS Measurements

  • Meshili, Valerie Ayubu;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.401-406
    • /
    • 2020
  • Continuously monitoring of Horizontal and Vertical movements in vulnerable areas due to earthquakes and volcanic activities is vital. These geohazard activities are the result of a slow deformation rate at the tectonic plate boundaries. The recent development of GPS (Global Positioning System) technology has made it possible to attain a millimeter level changes in the Earth's crust. This study used continuously observed GPS data at the flank of Ol Doinyo Lengai volcanic Mountain to determine crustal motion caused by impinging volcano from mantle convention. We analyzed 8 GPS observed from June 2016 to Dec 2019 using a well-documented Global Kalman Filter GAMIT/GLOBK software. The resulting velocity from GAMIT/GLOBK analysis was then used to compute the relative motion of our study area with respect to Nubia plate. Our analysis discovered a minor motion of less than 5mm/year in both horizontal and vertical components.

Emotion Graph Models for Bipedal Walk Cycle Animation

  • Rahman, Ayub bin Abdul;Aziz, Normaziah Abdul;Hamzah, Syarqawi
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.19-27
    • /
    • 2016
  • Technology in the animation industry has evolved significantly over the past decade. The tools to create animation are becoming more intuitive to use. Animators now spend more time on the artistic quality of their work than wasting time figuring out how to use the software that they rely on. However, one particular tool that is still unintuitive for animators is the motion graph editor. A motion graph editor is a tool to manipulate the interpolation of the movements generated by the software. Although the motion graph editor contains a lot of options to control the outcome of the animation, the emotional rhythm of the movements desired by the animator still depends on the animator's skill, which requires a very steep learning curve. More often than not, animators had to resort to trial and error methods to achieve good results. This inevitably leads to slow productivity, susceptible to mistakes, and waste of resources. This research will study the connection between the motion graph profile and the emotions they portray in movements. The findings will hopefully be able to provide animators reference materials to achieve the emotional animation they need with less effort.

Effects of Covariance Modeling on Estimation Accuracy in an IMU-based Attitude Estimation Kalman Filter (IMU 기반 자세 추정 칼만필터에서 공분산 모델링이 추정 정확도에 미치는 영향)

  • Choi, Ji Seok;Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.440-446
    • /
    • 2020
  • A well-known difficulty in attitude estimation based on inertial measurement unit (IMU) signals is the occurrence of external acceleration under dynamic motion conditions, as the acceleration significantly degrades the estimation accuracy. Lee et al. (2012) designed a Kalman filter (KF) that could effectively deal with the acceleration issue. Ahmed and Tahir (2017) modified this method by adjusting the acceleration-related covariance matrix because they considered covariance modeling as a pivotal factor in the estimation accuracy. This study investigates the effects of covariance modeling on estimation accuracy in an IMU-based attitude estimation KF. The method proposed by Ahmed and Tahir can be divided into two: one uses the covariance including only diagonal components and the other uses the covariance including both diagonal and off-diagonal components. This paper compares these three methods with respect to the motion condition and the window size, which is required for the methods by Ahmed and Tahir. Experimental results showed that the method proposed by Lee et al. performed the best among the three methods under relatively slow motion conditions, whereas the modified method using the diagonal covariance with a high window size performed the best under relatively fast motion conditions.

Fail safe and restructurable flight control system

  • Kanai, K.;Ochi, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.21-29
    • /
    • 1994
  • This paper presents a method to accommodate failures that affect aircraft dynamical characteristics, especially control surface jams on a large transport aircraft. The approach is to use the slow effectors, such as the stabilators or engines, in the feedforward manner. The simulation results indicate the performance of the RFCS. In some cases of control surface jam, the aircraft cannot recover without using the stabilators. Although the inputs to the slow effectors are determined using the nominal parameters, the effects of parameter change can be compensated by adjusting the control parameters for the fast surfaces. In the case of rudder jam, if the remaining control surfaces and the differential thrust cancel the moments produced by the stuck rudder, using the engine control improves time responses and reduces deflection angles of the control surfaces. If not, however, the aircraft starts a large rolling motion following a yawing motion. In that case, the stabilators should be used to damp the induced rolliig motion, instead of trying to directly cancel the moments caused by the stuck rudder. Unfortunately, the proposed control law for the stabilators does not give such inputs, because it does not take into account the dynamical effects which stuck surfaces have on the aircraft motions. However, we have shown through simulation that the aircraft can be recovered by giving the stabilators the control inputs that counteract the induced rolling moment. Besides, the method has also been shown through simulation to be effective in maintaining control during a situation similar to an actual accident. Finally let us mention a problem with the RFCS. As stated above, we have not established a method to select a trim point which call be reached as easily as possible using the remaining control effectors. In fact, recovery performance considerably depends on the trim states. As pointed out in Ref. 11, finding the best trim point for impaired aircraft will be one of the most difficult questions in RFCS design.

  • PDF

Flexible Multibody Dynamic Analysis Using Multirate Integration Method (멀티레이트 수치적분법을 이용한 유연다물체 동역학해석)

  • Kim, Seong-Su;Kim, Bong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2804-2811
    • /
    • 2000
  • A Nordsick form opf the multirate integration scheme has been proposed for flexible multibody dynamic systems. It is assumed that vibrational modal coordinates in the equations of motion are treated as fast variables, whereas the relative joint coordinates are treated as slow variables. In the multirate integration, the fast variables are integrated with small step-size, and the slow variables are integrated with larger step-size. The proposed multirate integration method is based on the Adams-Bashforth-Moulton predictor-corrector method and implemented in the Nordsieck vector form. The Nordsieck form of multrate integration method provides effective step-size control and at the same time, inherits the efficiency from the Adams integration method. Simulations of a flexible gun and turret system of the military tank have been carried out to show the effectiveness and efficiency of the proposed method.