• Title/Summary/Keyword: Slot-die head

Search Result 9, Processing Time 0.023 seconds

Study on Fluid Distribution in Slot-die Head Using CFD (CFD를 이용한 슬롯 다이 헤드 내부의 유체 분포 분석)

  • Yoo, Suho;Kim, Gieun;Shin, Youngkyun;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.39-44
    • /
    • 2022
  • Using a CFD (computational fluid dynamics) simulation tool, we have offered a design guideline of a slot-die head having a simple T-shaped cavity through an analysis of the fluid dynamics in terms of cavity pressure and outlet velocity, which affect the uniformity of coated thin films. We have visualized the fluid flow with a transparent slot-die head where poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) is injected. We have shown that the fluid dynamics inside the slot-die head depends sensitively on the cavity depth, cavity length, land length, and channel gap (i.e., shim thickness). Of those, the channel gap is the most critical parameter that determines the uniformity of the pressure and velocity distributions. A pressure drop inside the cavity is shown to be reduced with decreasing shim thickness. To quantify it, we have also calculated the coefficient of variation (CV). In accordance with Hagen-Poiseuille's laws and electron-hydraulic analogy, the CV value is decreased with increasing cavity depth, cavity length, and land length.

Study of Meniscus Formation in a Double Layer Slot Die Head Using CFD (CFD를 이용한 Double Layer 슬롯 다이 헤드의 메니스커스 형성 연구)

  • Gieun Kim;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • Using a computational fluid dynamics(CFD) simulation tool, we have provided a coating guideline for slot-die coating with a double layer slot die head. We have analyzed the fluid dynamics in terms of the coating speed, flow rate ratio, and viscosity ratio, which are critical for the stability of coating meniscus. We have identified the common coating defects such as break-up, air entrainment, and leakage by varying the coating speeds. The flow rate ratio is the critical parameter determining the wet film thickness of the top and bottom layers. It is shown that when the flow rate ratio exceeds or equals 1.8, air entrainment occurs due to insufficient hydraulic pressure in the bottom layer, even though the total flow rate remains constant. Furthermore, we have found that the flow of the bottom layer is significantly affected by the viscosity of top layer. The viscosity ratio of 4 or higher obstructs the flow of the bottom layer due to the increased hydraulic resistance, resulting in leakage. Finally, we have demonstrated that as the viscosity ratio increases from 0.1 to 10, the maximum coating speed rises from 0.4 mm/s to 1.6 mm/s, and the minimum wet film thickness decreases from 800 ㎛ to 200 ㎛.

  • PDF

Effect of the Microtip Length in a Slot-die Head on Fine Stripe Coatings (미세 스트라이프 코팅에 미치는 슬롯 다이 헤드 마이크로 팁 길이의 영향)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.69-74
    • /
    • 2019
  • The aim of this work is to investigate the effect of the microtip length in a slot-die head on coating of a fine poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) stripe. To this end, we have employed a meniscus guide with a 150-㎛-wide microtip and performed roll-to-roll slot-die coatings by varying its length between 500 ㎛ and 50 ㎛. When the microtip length is 150 ㎛ or shorter, we have observed three unexpected phenomena; 1) though the solution spreads much wider than the microtip width, yet the coated stripe width is almost the same as the microtip width, 2) the stripe width decreases, but the stripe thickness is rather increased with increasing coating speed at a fixed flow rate, 3) we obtain stripes much narrower than the microtip width at high coating speeds. It is due to the fact that 1) the meniscus is not well controlled by a short microtip, 2) the main stream of solution from the outlet is very close to the substrate and thus the distributed solution along the head lip merges with the main stream, and 3) the solution is not spread over the entire microtip end at high coating speeds, causing a tiny wobble in the meniscus. Using the 150-㎛-wide and 250-㎛-long microtip, we have fabricated 153-㎛-wide and 94-nm-thick PEDOT:PSS stripe at the maximum coating speed of 13 mm/s. To demonstrate its applicability in solution-processable organic light-emitting diodes (OLEDs), we have also fabricated an OLED device with the fine PEDOT:PSS stripe and obtained strong light emission from it.

Simulation of Capillary Flow Along a Slot-die Head for Stripe Coatings (Stripe 코팅용 슬롯 다이 헤드 모세관 유동 전산모사)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.92-96
    • /
    • 2019
  • In the presence of ${\mu}-tip$ embedded in a slot-die head for stripe coatings, there arises the capillary flow that limits an increase of the stripe density, which is required for the potential applications in organic light-emitting diode displays. With an attempt to suppress it, we have employed a computational fluid dynamics software and performed simulations by varying the ${\mu}-tip$ length and the contact angles of the head lip and ${\mu}-tip$. We have first demonstrated that such a capillary flow phenomenon (a spread of solution along the head lip) observed experimentally can be reproduced by the computational fluid dynamics software. Through simulations, we have found that stronger capillary flow is observed in the hydrophilic head lip with a smaller contact angle and it is suppressed effectively as the contact angle increases. When the contact angle of the head lip increases from $16^{\circ}$ to $130^{\circ}$, the distance a solution can reach decreases sharply from $256{\mu}m$ to $44{\mu}m$. With increasing contact angle of the ${\mu}-tip$, however, the solution flow along the ${\mu}-tip$ is disturbed and thus the capillary flow phenomenon becomes more severe. If the ${\mu}-tip$ is long, the capillary flow also appears strong due to an increase of flow resistance (electronic-hydraulic analogy). It can be suppressed by reducing the ${\mu}-tip$ length, but not as effectively as reducing the contact angle of the head lip.

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Development of Intermittent Coating Process Using Roll-to-roll Slot-die Coater (롤투롤 슬롯 다이 코터를 이용한 간헐 코팅 공정 개발)

  • Mose Jung;Gieun Kim;Jeongpil Na;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.32-37
    • /
    • 2023
  • For the potential applications in large-area OLED lightings, hydrogen fuel cells, and secondary batteries, we have performed an intermittent coating of high-viscosity polydimethylsiloxane using roll-to-roll slot die coater. During intermittent coating, dead zones inevitably appear where the thickness of PDMS patch films becomes non-uniform, especially at the leading/trailing edge. To reduce it, we have coated the PDMS patches by varying the process parameters such as the installation angle of the slot die head, coating speed, and patch interval. It is observed that the PDMS solution flows down and thus the thickness profile is non-uniform for horizonal intermittent coating, whereas the PDMS solution remaining on the head lip causes an increase in the PDMS thickness at the leading/trailing edges for vertical intermittent coating when the coating velocity is low. As the coating speed increases, however, the dead zone is shown to be reduced. It is addressed that the overall dead zone (the dead zone at the leading edge + the dead zone at the trailing edge) is smaller with horizontal intermittent coating than with vertical intermittent coating.

  • PDF

Structure Optimization of a Slot-Die Head with a Hydrophobic Micro-Patterns for Stripe Coatings (소수성 마이크로 패턴을 갖는 Stripe 코팅용 슬롯 다이 헤드 구조 최적화)

  • Yoo, Su-Ho;Lee, Jin-Young;Park, Jong-Woon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.6-10
    • /
    • 2019
  • In the presence of $\mu-tip$ for narrow stripe coating, there appears lateral capillary flow along the hydrophilic head lip because the $\mu-tip$ has some resistance to flow. It was known to be suppressed by increasing the contact angle of the head lip. In this paper, we have demonstrated by computational fluid dynamics(CFD) simulations that it can also be suppressed by the formation of micro-patterns on the shim and meniscus guide embedded into the slot-die head. To optimize the micro-patterned structure, we have performed simulations by varying the groove width, depth, and clearance. In the absence of micro-patterns, it is shown by experiment and simulation that the solution spreads to a distance of $1,300{\mu}m$ from the ${\mu}-tip$. In the presence of micro-patterns with the groove width and clearance of $50{\mu}m$, the distance the solution spreads is reduced to $260{\mu}m$. However, no further suppression in the capillary flow is observed with micro-patterns with the groove width of $40{\mu}m$ or less. It is also observed that the capillary flow is not affected by the groove depth if it is larger than $10{\mu}m$. We have shown that the distance the solution spreads can be reduced further to $204{\mu}m$ by coating a hydrophobic material (contact angle of $104^{\circ}$) on the surface of micro-patterns having the groove width and clearance of $50{\mu}m$.

Fabrication of Cylindrical Microlens Using Slot-die Coating and Thermal Reflow Method (슬롯 다이 코팅과 Thermal Reflow방법을 이용한 Cylindrical 마이크로렌즈 제조)

  • Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.30-35
    • /
    • 2020
  • A microlens has been fabricated by various methods such as a thermal reflow, hot embossing, diamond milling, etc. However, these methods require a relatively complex process to control the microlens shape. In this work, we report on a simple and cost-effective method to fabricate a cylindrical microlens (CML), which can diffuse light widely. We have employed a slot-die head with the dual plate (a meniscus guide with a protruded μ-tip and a shim with a slit channel) for coating of a narrow stripe using poly(methyl methacrylate) (PMMA). We have shown that the higher the coating gap, the lower the maximum coating speed, which causes an increase in the stripe width and thickness. The coated PMMA stripe has the concave shape. To make it in the shape of a convex microlens, we have applied the thermal reflow method. When the stripe thickness is small, however, its effect is negligible. To increase the stripe thickness, we have increased the number of repeated coating. With this scheme, we have fabricated the CML with the width of 223 ㎛ and the thickness of 7.3 ㎛. Finally, we have demonstrated experimentally that the CML can diffuse light widely, a feature demanded for light extraction efficiency of organic light-emitting diodes (OLEDs) and suppression of moiré patterns in displays.

Fabrication of Solution-Based Cylindrical Microlens with High Aspect Ratio (고종횡비를 갖는 용액기반 원통형 마이크로렌즈 제조)

  • Jeon, Kyungjun;Lee, Jinyoung;Park, Jongwoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.70-76
    • /
    • 2021
  • A cylindrical microlens (CML) has been widely used as an optical element for organic light-emitting diodes (OLEDs), light diffusers, image sensors, 3D imaging, etc. To fabricate high-performance optoelectronic devices, the CML with high aspect ratio is demanded. In this work, we report on facile solution-based processes (i.e., slot-die and needle coatings) to fabricate the CML using poly(methyl methacrylate) (PMMA). It is found that compared with needle coating, slot-die coating provides the CML with lower aspect ratio due to the wide spread of solution along the hydrophilic head lip. Although needle coating provides the CML with high aspect ratio, it requires a high precision needle array module. To demonstrate that the aspect ratio of CML can be enhanced using slot-die coating, we have varied the molecular weight of PMMA. We can achieve the CML with higher aspect ratio using PMMA with lower molecular weight at a fixed viscosity because of the higher concentration of PMMA solute in the solution. We have also shown that the aspect ratio of CML can be further boosted by coating it repeatedly. With this scheme, we have fabricated the CML with the width of 252 ㎛ and the thickness of 5.95 ㎛ (aspect ratio=0.024). To visualize its light diffusion property, we have irradiated a laser beam to the CML and observed that the laser beam spreads widely in the vertical direction of the CML.