• Title/Summary/Keyword: Slot Waveguide

Search Result 143, Processing Time 0.033 seconds

Design of a Multiple Band-notched Wideband Circular Slot Antenna with Arc-shaped Slots

  • Yeo, Junho;Park, Cheol-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • A design method to achieve multiple band-rejection characteristics in a wideband circular slot antenna is presented. First, a wideband circular slot antenna fed by a coplanar waveguide is designed to operate in the frequency range between 2.3 and 11GHz, which covers WLAN, WiBro, WiMAX, and UWB frequency bands. Next, resonant frequency variations of rejection bands are examined with respect to different slot locations and lengths when slots are inserted on the ground conductor and the circular patch of the antenna. When arc-shaped slots are placed close to the circular transition from a feeding part, multiple notch bands are obtained. In this case, a half of the guided wavelength of the first notch band corresponds to the slot length and other notch bands are integer-multiple of the first band. Single notch band can be obtained when the slot is located off the transition part. Based on this study, a wideband circular slot antenna with five band-rejection frequency bands at 2.45, 3.5, 4.9, 7.35, and 9.8GHz is designed and fabricated. The first arc-shaped slots are located in the ground conductor close to the circular transition from a feeding part to generate notch bands at 2.45, 4.9, 7.35, and 9.8GHz, while the second slot for 3.73 GHz is placed on top side in the circular patch. The proposed design method is validated by good agreement between the simulated and measured results.

Compact Dual-band CPW-fed Slot Antenna Using Split-Ring Resonator (분할 링 공진기를 이용한 소형 이중 대역 CPW-급전 슬롯 안테나)

  • Yeo, Junho;Park, Jin-Taek;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2526-2533
    • /
    • 2015
  • In this paper, a design method for a compact dual-band coplanar waveguide-fed slot antenna using SRR(split-ring resonator) conductor is studied. The SRR conductor is loaded inside a rectangular slot of the proposed antenna for dual-band operation. When the SRR conductor is inserted into the slot, the original rectangular slot is divided into a rectangular loop region and a rectangular slot region, and frequency bands are created by the loop and slot, separately. A prototype of the proposed dual-band slot antenna operating at 2.45 GHz WLAN band and 3.40-5.35 GHz band is fabricated on an FR4 substrate with a dimension of 30 mm by 30 mm. Experiment results show that the antenna has a desired impedance characteristic with a frequency band of 2.38-2.51 GHz and 3.32-5.38 GHz for a voltage standing wave < 2, and measured gain is 1.7 dBi at 2.45 GHz, and it ranges 2.4-3.2 dBi in the second band.

Analysis of Electromagnetic Pulse Coupling Via a Slot Aperture into Parallel-Plate waveguide (슬롯 개구를 통한 평행평판 도파관 내부로의 전자파 펄스 결합문제 해석)

  • 이영순;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1204-1210
    • /
    • 2000
  • An analysis method for obtaining transient response of electromagnetic pulse(EMP) coupled via a slot aperture into a parallel-plate waveguide, is considered. The mixed-potential integral equation(MPIE), in which the vector and scalar potential Green's functions for the unknown equivalent magnetic surface current of the aperture in parallel-plate region are expressed in closed forms derived by use of the improved complex image method, is formulated. When the method of moments(MoM) is used to solve the MPIE, the matrix-fill time is significantly reduced because of closed-form Green's functions. In order to check the validity of the present method, the numerical results obtained by the present method are compared with those obtained by the previous method. Fairly good agreements between them are observed.

  • PDF

Miniaturization of SIW-Based Linearly Polarized Slot Antennas for Software-Defined Radar

  • Han, Jun Yong;Yoon, Seong Sik;Lee, Jae Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.248-253
    • /
    • 2016
  • Two substrate integrated waveguide (SIW)-based antennas for the application of software-defined radar are proposed and investigated herein. It is usually well known that SIWs are easily integrated, lightweight, have low insertion loss, and low interference levels compared to conventional microstrip structures. The primary function of the proposed antennas is to transmit continuous waves for indoor motion detection, with the lowest amount of loss and an appropriate amount of gain. Moreover, the results of this study show that the size of the antenna can be reduced significantly (i.e., by about 40%) by applying a meander line structure. The operating frequencies of the proposed antennas are both within the industrial, scientific, and medical band (i.e., 2.4-2.4835 GHz). Measured results of return loss are -16 dB and -20 dB at 2.435 GHz and 2.43 GHz, respectively, and the measured gain is 8.2 dBi and 5.5 dBi, respectively. Antenna design and verification are undertaken through commercially available full electromagnetic software.

Design of waveguide cavity resonator band pass filter using slot coupling (슬롯결합을 이용한 도파관 공동 공진기 대역통과 필터 설계)

  • Jo, Seong-Mun;Park, Bo-Youn;Choi, Sung-Youl;Ko, Young-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.288-293
    • /
    • 2003
  • In this paper, Filter could use to IMT2000 repeater using resonator of Comb-line form that has waveguide structure and designed. Coupled resonators designed using slot in wall between resonators to compact. 5-stage resonators have equal structure and input and output part was optimized to get into minimum impedance. Band pass filter characteristic satisfied design condition as result that used Chebyshev function that have 0.2 dB ripple and analyze using simulation tool.

  • PDF

Design of CPW-Fed Printed Monopole Antenna for CDMA/WLAN (CDMA/WLAN 겸용 CPW 급전 인쇄형 모노폴 안테나 설계)

  • Nam, Ju-Yeol;Song, Won-Ho;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.623-629
    • /
    • 2015
  • In the present study, a coplanar waveguide (CPW)-fed printed monopole antenna with an inverted n-shaped slot is newly proposed for dual band operations which cover bandwidths of CDMA (1.85~2.025 GHz) and WLAN (2.4~2.484 GHz) as well as implementation of omnidirectional radiation pattern. For enhancement of impedance bandwidth ($S11{\leq}10dB$) in 2.4 GHz WLAN frequency band, an inverted n-shaped slot instead of the previous n-shaped slot is etched on the printed radiating monopole. The proposed antenna is designed and fabricated on one side of FR4 substrate with dielectric constant of 4.4, thickness of 1.6 mm, and size of $50{\times}25mm^2$. It has been observed that the measured impedance bandwidths are 280 MHz (1.84~2.12 GHz) in frequency band of CDMA and 420 MHz (2.38~2.8 GHz) in WLAN frequency band respectively. It is noticeable that impedance bandwidth in 2.4 GHz frequency band of WLAN is enlarged to three times due to use of inverted L-shaped slot in comparison with impedance bandwidth 140 MHz (2.39~2.53 GHz) obtained by use of the previous n-shaped slot. In addition, good omnidirectional radiation patterns have been observed over the entire frequency band of interest.

The Design of Planar Beam Tilt Antenna for Satellite up-link Communication in Ka-band (Ka-band 위성통신 up-link 용 평면형 빔틸트 안테나의 설계)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.101-109
    • /
    • 2012
  • Because the installation problem of parabola antenna that is tilted to 45 degree when this antenna is installed at the area of middle latitude, the study on planar antenna in place of parabola antenna is made rapid progess. Especially, The development of the planar antenna for VSAT is needed depending on the increased Ka-band satellite communications. In this paper, in order to meet with these performances, an array antenna consisting of the vertical polarized waveguide longitudinal slots based on the leaky-wave mode of traveling wave antenna is proposed. Especially, for the lower sidelobe level, the design method of the radiation power distribution control using the different slot widths is proposed. An array antenna consisting of 32 leakywave waveguide antennas is showing 35.16 dBi of gain, 2.5 degree of beamwidth at azimuth, below than -30 dB of sidelobe level, 45.8 degree of beam tilt angle in center frequency 30.2 GHz.

The Pattern Improvement of Leaky-wave Slot Array Antenna for Satellite Communications (위성통신용 슬롯배열 누설파 안테나의 패턴 개선)

  • Lim, Gye-Jae;Park, Jong-Seo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • Small size and low profile antenna for mobile vehicular-top-mounted is needed in satellite communication services such as DBS, Satellite Internet and VSAT. In middle latitudes, the development of an array antenna which has the conformal, low profile and 45 degree beam tilted configuration, and has the high gain with sharp beamwidth, low sidelobe and low loss is required for Ka band satellite communication. In this paper, in order to meet with these performances, an array antenna consisting of the vertical polarized waveguide longitudinal slots based on the leaky-wave mode of traveling wave antenna is proposed. Especially, for the lower sidelobe level the radiation power control using a design method of the different slot width is proposed. An array antenna consisting of 32 leakywave elements is showing 34.4 dBi of gain, 3.6 degree of beamwidth, below than -25 dB of sidelobe level, 43 degree of beam tilt angle in center frequency 20.0 GHz. Feed network designed by waveguide cooperated feed shows good performance of wideband and low loss.

  • PDF

A design and manufacture of CPW-Fed UWB antenna with notched WLAN band by using a U shaped slot (U자형 슬롯을 사용하여 WLAN 대역이 제거된 CPW 급전 방식을 갖는 UWB 안테나 설계 및 제작)

  • Ha, Yun-Sang;Kim, Gi-Rae;Yun, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2518-2525
    • /
    • 2015
  • In this paper, we propose a UWB(Ultra Wide Band) antenna with CPW(Coplanar Waveguide) structure notched the 802.11a(5.15 ~ 5.825 GHz) band by using the U shaped slot. The proposed antenna not only shows Ultra-Wideband characteristic(3.1 ~ 10.6 GHz) suitable for UWB communications but has partially notched-band characteristic to reject 5 GHz WLAN band(5.15 ~ 5.825 GHz). The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.4, and its overall size is $30mm(W){\times}20mm(L){\times}1mm(t)$. Fabricated antenna satisfied $VSWR{\leq}2$ in 3.1 ~ 10.6 GHz except for the band rejection of 5.15 ~ 5.825 GHz. And measured results of gain and radiation patterns characteristics displayed determined for operating bands.

Bent slot loop antenna for the dual band wireless LAN (이중대역 무선 랜용 굴곡형 슬롯 루프 안테나)

  • Lee, Young-Soon;Im, Seong-Gyun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • In this paper, Coplanar waveguide(CPW)-fed slot loop antenna, which is applicable to the dual band(2.4GHz~2.4835GHz, 5.15GHz~5.825GHz) for the wireless LAN, is proposed. In order to miniaturize the proposed antenna, slot loop is bent by meandering. The resonant frequencies in the required dual band are adjusted by variation of the resonant length of slot loop as well as slot width. In particular, use of capacitive coupling CPW feed provides impedance matching without a seperate matching circuit, because the amount of electromagnetic coupling can be controlled by the offset between feed and radiator. As a result, it has been observed that the proposed antenna satisfies not only the required return loss(${\leq}10dB$) but also has high efficiency(${\geq}80%$) over the whole frequency band. In order to check the validity of the proposed antenna, some simulated results for return loss and radiation pattern are presented in comparison with the measured results.