• Title/Summary/Keyword: Sloping Field

Search Result 67, Processing Time 0.021 seconds

Model Experiments for Acoustic Propagation Characteristics in the Across Slope Direction of the Sloping Sea Bed (경사해저의 해안선 방향 음파 전달 특성에 관한 모형 실험)

  • Yoon, Jong-Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.52-60
    • /
    • 1991
  • Sound propagation in a sloping sea bed ocean environment demonstrates ray curvature in a direction parallel to the shoreline. The theoretical analysis of this shows that an ensonified region and a shadow region are formed, and their spatial extents depend on the spatial coordinates of source and receiver, a sloping angle and sourece frequency. The purpose of this experimental study using a sloping sea bed model is to check the theoretical prediction as a part of an ongoing investigation in the ocean environment. The sloping sea bed model used in this experiment had an ideal pressure-release boundaries and a sloping angle of $220.5{\circ}$ A single frequency signal and an impulsive signal were used as omnidirectional point sources. The spatial acoustic field characteristics in the across slope direction were measured using the former and the frequency dependent field characteristics in a specific point were obtained using the latter. It has been found that the analysis for the spatial extent of shadow zone and the frequency dependent field characteristics in the across slope direction, has a good agreement with the theoretical solution.

  • PDF

Finite element analysis for laterally loaded piles in sloping ground

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.59-78
    • /
    • 2012
  • The available analytical methods of analysis for laterally loaded piles in level ground cannot be directly applied to such piles in sloping ground. With the commercially available software, the simulation of the appropriate field condition is a challenging task, and the results are subjective. Therefore, it becomes essential to understand the process of development of a user-framed numerical formulation, which may be used easily as per the specific site conditions without depending on other indirect methods of analysis as well as on the software. In the present study, a detailed three-dimensional finite element formulation is presented for the analysis of laterally loaded piles in sloping ground developing the 18 node triangular prism elements. An application of the numerical formulation has been illustrated for the pile located at the crest of the slope and for the pile located at some edge distance from the crest. The specific examples show that at any given depth, the displacement and bending moment increase with an increase in slope of the ground, whereas they decrease with increasing edge distance.

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.

Evaluation of Stiffness Profile for Site Response Analysis of Highly-Elevated Earth-fill Embankment (고성토 제방의 부지응답해석을 위한 전단강성 평가)

  • Joh, Sung-Ho;Rahman, Norinah Abd;Hassanul, Raja
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.872-879
    • /
    • 2010
  • High rock-fill embankment is relatively flexible, which makes crest of embankment subject to excessive amplification in displacement due to earthquake loading. To overcome problems related with site response in high embankment, it is essential to evaluate shear-wave velocity profile of the embankment with improved accuracy and reliability. In this aspect, an experimental research was performed to answer how to perform surface-wave tests and to analyze measurements at an embankment site with a sloping ground surface. Unlike flat ground surface, sloping ground may hamper and slow down propagation of surface waves due to multiple reflections and refractions in embankment. To figure out this reasoning for the effect of multiple reflections and refractions due to sloping surface, surface wave tests were performed at a reservoir embankment of Chung-Song in North KyeongSang Province. Parameters involved in surface wave tests at non-flat surface, including source directionality, geometry-related constraint and frequency components in source function, were investigated using field measurements.

  • PDF

Bund Collapse in Sloping Paddy Area by a Heavy Rainfall -Case Study for Dongrim-ri in Chungbuk Province- (집중호우에 의한 경사지논의 논둑붕괴 -충북 청원군 옥산면 동림리의 사례-)

  • 김진수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.55-63
    • /
    • 1996
  • The situation and cause of bund collapse in steep sloping paddy area by a heavy rainfall of Chungbuk Province were investigated by field surveys. Shapes of paddy plots are irregular and average size of them is 12.6a. Surface, groundwater and plot-to-plot irrigations are being carried out in the study plots. The type of bund collapse can be divided as follows: overflow type and inundation type. The overflow type generally occurs at the bund with slope lacking the design standard. The inundation type damages paddy plots more seriously than the overflow type. It induces continuous bund collapse from a inflow-plot to a outflow-plot and includes lots of type (inside paddy) collapse, which results in much subsoil erosion. The installation of mountain stream weir and maintenance of mountain stream are proposed to prevent the inundation type collapse.

  • PDF

Design and development of an automated all-terrain wheeled robot

  • Pradhan, Debesh;Sen, Jishnu;Hui, Nirmal Baran
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.21-39
    • /
    • 2014
  • Due to the rapid progress in the field of robotics, it is a high time to concentrate on the development of a robot that can manoeuvre in all type of landscapes, ascend and descend stairs and sloping surfaces autonomously. This paper presents details of a prototype robot which can navigate in very rough terrain, ascend and descend staircase as well as sloping surface and cross ditches. The robot is made up of six differentially steered wheels and some passive mechanism, making it suitable to cross long ditches and landscape undulation. Static stability of the developed robot have been carried out analytically and navigation capability of the robot is observed through simulation in different environment, separately. Description of embedded system of the robot has also been presented and experimental validation has been made along with some details on obstacle avoidance. Finally the limitations of the robot have been explored with their possible reasons.

Interspecific Differences of the Capacities on Excessive Soil Moisture Stress for Upland Crops in Converted Paddy Field

  • Jung, Ki-Yuol;Choi, Young-Dae;Chun, Hyen-Chung;Lee, Sanghun;Kang, Hang-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.2
    • /
    • pp.157-167
    • /
    • 2016
  • The interspecific estimation for tolerance capacities of upland crop species to excessive soil water stress in paddy field is significant in agricultural practices. Most of upland crops can be damaged by either excessive soil water or capillary rise of the water table during rainy season in paddy fields. The major objective of this study was to evaluate water stress of upland crops under different drainage classes in converted paddy field. This experiment was carried out in poorly drained soil (PDS) and imperfectly drained soil (IDS) of alluvial sloping area located at Toero-ri, Bubuk-myeon, Miryang-si, Gyeongsangnam-do. The soil was Gagog series, which was a member of the fine silty, mixed, nonacid, mesic family of Aeric Endoaquepts (Low Humic-Gley soils). Two drainage methods, namely under Open ditch drainage methods (ODM) and, Closed pipe drainage methods (PDM) were installed within 1-m position at the lower edge of the upper paddy fields. The results showed that sum of excess water days ($SWD_{30}$), which was used to represent the moisture stress index, was 42 days (the lowest) in the PDM compared with 110 days in the ODM. Most of upland crops were more susceptible to excessive soil water during panicle initial stage on more PDS than on IDS. Yield of upland crops in the PDM was continuously increased by the rate of 15.1% on sorghum, 15.4% foxtail millet, 53.6% proso millet, 49.6% soybean and 47.9% adzuki bean as compared in the ODM. The capacity for tolerance by excessive soil water based on yield of each upland crop in the poorly drained sloping paddy fields was the order of sorghum, soybean, foxtail millet, proso millet and adzuki bean. Therefore, Sorghum is relatively tolerant to excessive soil water conditions and, may be grown successfully in converted paddy field.

Variation of Soil Physical Characteristics by Drainage Improvement in Poorly Drained Sloping Paddy Field (배수불량 경사지 논 토양의 배수방법에 따른 토양 물리성 변화)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Jeon, Seung-Ho;Lee, Hwang-A
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.704-710
    • /
    • 2012
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. This study was conducted to evaluate soil physical characteristics by drainage improvement in poorly drained sloping paddy field. The results showed that subsurface drainage by Pipe Drainage improves the productivity of poorly drained soils by lowering the water table and improving root zone soil layer condition. In an Pipe drainage plot, soil moisture drained faster as compared to the other drainage methods. Infiltration rate showed high tendency to Piper Drainage method about $20.87mm\;hr^{-1}$ than in Open Ditch method $0.15mm\;hr^{-1}$. And Similarly soil water and degree of hardness and shear strength phase of soil profile showed a tendency to decrease. From the above results, we found that when an subsurface drainage was established with at 1m position from the lower edge paddy levee of the upper field in sloping poorly drained paddy fields Pipe Drainage was the most effective drainage system for multiple land use.

Optimal Design of Contour-Lined Plots for Land Consolidation Planning in Sloping Areas (경사지 경지정리지구의 등고선 구획 최적설계)

  • 강민구;박승우;강문성;김상민
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.6
    • /
    • pp.83-95
    • /
    • 2003
  • In this study, a new concept in a paddy consolidation project is introduced in that curved parallel terracing with contour-lined layout is adopted in sloping areas instead of conventional rectangular terracing. The contoured layout reduces earth-moving considerably compared to rectangular methods in consolidation projects. The objective of the paper is to develop a combinatorial optimization model using the network theory for the design of contour-lined plots which minimizes the volume of earth moving. The results showed that as the length of short side of plot is longer or the land slope is steeper, the volume of earth moving for land leveling increases. The developed optimization model is applied for three consolidated districts and the resulting optimal earth moving is compared with the volume of earth from the conventional method. The shorter is the minimum length of short side of a polt with increases the number of plots, the less is the volume of earth. As the minimum length of short side is 20 m for efficient field works by farm machinery, the volume of earth moving of optimal plot is less by 21.0∼27.1 % than that of the conventional consolidated plots.