• Title/Summary/Keyword: Sloped agricultural field

Search Result 22, Processing Time 0.031 seconds

A Study on the Methodology of Land-Consolidation Sloping Paddies in land Vallry for the Farm-Mechanization (II) (기계화를 전제로 한 산간경사지답경지정리방안에 관한 연구(II))

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.57-68
    • /
    • 1982
  • The paddy fiels slope located in Kangweon province Hwyongsung gun Gonggeun myon Shinchonri was considerably steep and so it was impossible to economically consolidate the field up to date. But for the porpose of farm mechanization, the field (32. 27ha) was consolidated by the auther under the assitance of the Ministry of Agriculture and Fishery and,;the Administration of Kangweon province. This paddy field consolidation was caused by the treatise on "Land-consolidation methods for farm mechanization in the steep-sloped paddy field", of which the auther is the same. The constrution was carried out from September, 1981 to April, 1982. During the 4esign and construction, some Peculiarities were found and discussed. That is, in design, besides the common condititions for a design, some special conditions were considered and written below; (1) The ranges of field slope in this design were 1/100-1/30. (2) Long sides of the land readjustment blocks must be arranged abreast contour line, and so they make the amount of cutting and banking decreased so as to take the maximum advantage of the configuration of the field. (3) In design, the main principles of dividing blocks were written below; i) First of all, long side of a block should be drawn straight abreast a contour line. ii) Long side of a block should arrange abreast contour line and make its length 100-150m, if not, l)reak the side in order to make a bended rectangle. iii) Length of a short side should be determinded within differences of elevation (0.6 -1. 2m) between the two adjacent blocks toward the normal to a contour line. iv) Length of a short side should be above 15m and the ratio of long and short side should be slso kept 1: (4-6). v) A new field surface leveling was determinded from the elevation which produce the least amount of cuttingand banking within the range of 0.6-1. 2m diffe rences of elevation between the two adjacent blocks. vi) In the course of dividing blocks with the same width along the line which was normal to a contour line, all blocks connot keep their shape in a retangle because of steep slope of the field and so on, and so it was also necessory to make some non-retanglar and small blocks such as a trianglar or trapezoidal shape, which was impossible to use some of farm machinery. But because this non-rectanglar and small blocks were divided, larger and many rectanglar blocks can be divided and construction cost can also be lowered. According to the conditions discussed above, the paddy field consolidation project designed and constructed. And the results of this study were obtained as below; (1) Three-forth of total cost of this paddy field consolidation was not construction cost, and these cost consist of land grading (1/4), road and canal construction cost (1/4) and the other cost (1/4) such as surveying or materials and 56 on. (2) The steeper the land slope, the greater cost was assigned for road and canal construction, and than land grading. (3) Curtailment of the road and canal construction cost depended on simplificating their strutures. (4) In the case of the land slopes were low, the land grading cost was high by 1: 1.4 in comparison with the road and canal construction cost, and conversely when the slops were steep, the road and canal construction cost was high by 1 : 5 in compa- rison with the land grading cost. (5) The densities of irrigation canal, drainage canal and trunk and branch road were 150. Sm/ha, 60. im/ha and 17. 4m/ha respectively. The density of irrigation canal of the area was high by 2 times in comparison with the average one of Kangweon Province, and the others were nearly the same. (6) Most farmers (above 85%) knew the effects of paddy field consolidation. The effects are; 1) Improvement of irrigation 2) Improvement of farm management 3) Improvement of transportarion 4) farm mechanization and 5) grouping of the scattered land. And the more farm modernization was accomplished by these projects, the more farmers wanted to live in their land. (7) In spite of the very steep sloped paddy field, the diminution rate of the net farm land caused by consolidation was 7.7% which was nearly the same as the one of Chulweon plain of Kangweon province. Land grading cost was 971, OOOwon/ha which was rather cheap by 13.2% than the one of Ghulweon plain, and unit construction cost was 5, 341, OOOwon/ha (included soil addition) which was also nearly the same as the one of Chulweon plain and FNFIA (The federation of national farmland improvement association).

  • PDF

Assessments of the Nutrient Losses in the Sloped Farm Land (경사지 밭토양에서의 양분유실량 평가)

  • Jung, Pil-Kyun;Eom, Ki-Cheol;Ha, Sang-Keon;Zhang, Yong-Seon;Hur, Seung-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.spc
    • /
    • pp.47-50
    • /
    • 2009
  • Nutrient losses, especially nitrogen and phosphorus, in agricultural runoff can contaminate surface and ground water, leading to eutrophication. Thus, erosion control is crucial to minimizing nutrient losses from agricultural land. Assessments of various erosion control practices were carried out under various cropping system, soil management practices, and slope conditions by means of a lysimeter study and under artificial rainfall. Soil and nutrient losses were monitored in a small agricultural field to evaluate the soil conservation practices. Nutrient losses occur in runoff and leachate (dissolved nutrient) and in sediments (particulate nutrient). Dissolved nitrates accounted for the majority (about 90%) of nitrate transport within the soil. Particulate phosphate in sediments represented the majority (60% to 67%) of phosphate transport. Recently, engineering and agronomic erosion-control practices haver been used to reduce erosion problems in fields on slopes. These practices reduced soil loss, runoff, and nutrient loss to 1/6, 1/2,and 1/3 their original levels, respectively. Bioavailable particulate phosphate in sediments represents a variable but longterm source of phosphate for algae. Dissolved nitrate and phosphate are immediately available for algal uptake, so reducing fluxes of these nutrients should also reduce the risk of eutrophication.

A Study on Characteristic and Change of Agricultural Land Use for the Mountainous Village - The Case Study on Yowon-Village, Gyeongbuk Province - (산지촌의 농업토지이용 변화와 특성 -경북 영양군 석보면 요원리 지역을 사례로 -)

  • 오남현
    • Journal of the Korean Geographical Society
    • /
    • v.37 no.1
    • /
    • pp.93-110
    • /
    • 2002
  • The purpose of this study is to analyse the change and characteristic of agricultural land use for the mountainous village which was linked to the development of arable land in the historic process as the case study on Yowon-village, Gyeongbuk province. The findings are summarized as fellows. First, most of arable land development had been developed from the late 16th century to the late 19th century and in the 1960s. A rice field was developed at the valley containing water resource and a dry field at the land close to a village before 1960 and at the gently sloped and wide hill after 1960. Second, the crops cultivated before the introduction of commercial agriculture were potato, foxtail millet, bean. After the 1970s, The vegetable, red pepper, tobacco were commercially cultivated. Third, the main group of land use change(choice of crops) result from effort of the inhabitant The significance of this study are as follows, explaining the change and characteristic of agriculture land use for the mountainous village which was linked to the development of arable land, studying as the case on small-scale village.

Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields (고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석)

  • Kim, Minyoung;Choi, Yonghun;Lee, Sangbong;Kim, Hyunjeong;Kim, Seounghee;Kim, Youngjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

Design and Evaluation of a Flow Rotate Divider for Sampling Runoff Plots. (토양 유실량 및 유출수량 측정을 위한 회전분할집수기의 평가)

  • Zhang, Yong-Seon;Park, Chan-Won;Lee, Gye-Jun;Lee, Jeong-Tae;Jin, Yong-Ik;Hwang, Seon-Woong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.6
    • /
    • pp.374-378
    • /
    • 2008
  • For the standard method of collecting the run-off, it is consumed the high cost and much effort to install and to manage this instrument. Because the all the soil and water from reservoir tank must be eliminate after their measurement of amount of soil loss and run-off and installed the reservoir tank at regular size in the experimental field. Therefore, objective of this study was to compare its efficacy between the standard method and a flow rotate divider for ontinuously collecting and measuring the soil loss and run-off in order to conveniently conduct the field experiment of the lysimeters. For collecting the sampling of soil loss and run-off from agricultural land with invariable ratio, a flow rotate divider was consisted with a 8 blades of round plate sloped in order to collect the invariable ratio of soil and water at lowest part from round plate by the law of gravity. For comparing its accuracy in the batch scale experiment, it shown that there was significantly a positive linear corelation ($r=0.997^{***}$) between flowing and sampling amounts with adjusting the range from 1 to $10L\;min^{-1}$ with flowing rate. In collecting ratio in the field experiment, it observed that the more its accuracy had, the more soil loss and run-off.

Evaluation of the Dressed Soil applied in Mountainous Agricultural Land (산지농경지에 투입되는 모재성토의 특성과 농업환경에 미치는영향)

  • Joo, Jin-Ho;Park, Chol-Soo;Jung, Yeong-Sang;Yang, Jae-E;Choi, Joong-Dae;Lee, Won-Jung;Kim, Sung-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Farmers typically apply the dressed soil (coarse saprolite) for various reasons in the sloped upland with high altitude in Kangwon province. However, little researches on the impacts of application of dressed soil in uplands were conducted. Therefore, it is necessary to assess soil quality in this area and to study adverse effects on soil and water due to application of dressed soil. Coarse saprolite itself showed signiScantly poor chemical properties, Particularly P and organic matter contents were not enough for crops to grow. With respect to biological qualities such as enzyme activity and microbial population, coarse saprolite itself showed poor qualities. For example, bacterial population in coarse saprolite contains six times or ten times smaller populations. Based on survey at Jawoon-ri in Hongchon-gun, this region is susceptible for soil erosion due to massive amounts of coarse saprolite application, undesirably long slope length, etc. When weestimated soil loss, more than 40% of farming field in this region exceeded $11.2MT\;ha^{-1}\;yr^{-1}$. According to experiment by installing sediment basins. the sediment basin with up-down tillage and application with dressed soil had the highest soil loss and runofT, while the sediment basin with contour tillage and without soil dressing showed the lowest soil erosion and runoff.

Runoff and Erosion of Alachlor, Ethalfluralin, Ethoprophos and Pendimethalin from Soybean Field Lysimeter (콩재배 포장 라이시메타를 이용한 alachlor, ethalfluralin, ethoprophos 및 pendimethalin의 유출량 평가)

  • Kim, Chan-Sub;Lee, Hee-Dong;Oh, Byung-Youl;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.297-305
    • /
    • 2006
  • The field lysimeter experiment were undertaken to investigate the runoff and erosion loss of four pesticides from sloped land by rainfall and to assess the influence of pesticide properties, environmental factors and agricultural practices on them. The pesticide losses from soybean planted field and bare field were measured using field lysimeters. Pesticide losses from a series of lysimeter plots of sloped land by rainfall ranged $0.1{\sim}0.6%$ for alachlor, $1.1{\sim}4.5%$ for ethalfluralin, $8{\sim}31%$ for pendimethalin and 0.03% for ethoprophos, which were $1/3{\sim}2.5$ times to them in the simulated rainfall study. The erosion loss rates of pesticides from soybean-plots were $21{\sim}75%$ lower than the ones from bare soil plot. The effect of slope conditions was not great for runoff loss, but for erosion loss increased to maximum $4{\sim}12$ times by sloping degree and slope length. The peak runoff concentration in soybean-plots and bale soil plots were $3{\sim}278{\mu}gL^{-1}\;and\;6{\sim}450{\mu}gL^{-1}$ for alachlor, $1.1{\sim}11.4{\mu}gL^{-1}\;and\;0.9{\sim}16{\mu}gL^{-1}$ for ethalfluralin, $7{\sim}42{\mu}gL^{-1}\;and\;6{\sim}66{\mu}gL^{-1}$ for pendimethalin, and $2{\sim}53{\mu}gL^{-1}\;and\;0.1{\sim}113{\mu}gL^{-1}$ for ethoprophos, respectively, on nine different slope degree and slope length plots. Therefore, the differences of the peak runoff concentration between bare soil plots and soybean-plots were not great.

Development of Liquid Fertilizer Spreading System for a Sloped Land (경사지용 가축분뇨 액비 살포장치 개발)

  • Oh, I.H.;Jang, C.H.;Kim, W.K.;Song, J.H.
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.115-122
    • /
    • 2010
  • A major problem within the agricultural/farming community concerns the enormous amount of manure produced by livestock; one possible solution to this problem is to use the animal slurry as a liquid fertilizer. While there are several areas where this fertilizer could be used, one promising area of application is within chestnut tree fields. However, since most of these fields are located on slopes of varying grades and not on flat land, a different spread system is required. Generally, chemical fertilizer is spread in the chestnut field manually by hand; not only does this require a great deal of manpower it is also very difficult and hard work. In our lab experiment, we investigated the relationship between the amount of fertilizer spread and the length of pipe used at varying pressure levels. The hose in our system utilized PVC piping with evenly spaced holes for the fertilizer to dissipate. We initially found that the amount of spread was greatly reduced by reducing pipe pressure. While the difference of the amount of spread during fertilizing was not great, we did find that the reduction of the spread could be correlated to the frictional resistance of the inner lining of the pipe. Based on this, we hypothesized that an increase in pipe pressure would yield a consistent spread. Additionally, a similar outcome could be obtained by regulating the distance of the holes in the pipe and their diameter.

Runoff of Fluazinam Applied in Pepper Field-lysimeter (고추재배 포장 라이시메타를 이용한 fluazinam의 유출 평가)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Kwon, Hye-Young;Im, Geon-Jae
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.256-263
    • /
    • 2013
  • The field lysimeter study was undertaken to investigate influence of agricultural practice and topography on runoff and erosion loss of fluazinam from the sloped land grown pepper. The WP type formulation was applied on July in 2003~2005. The wash-off rates were from 1.4% to 8.4% of the applied fluazinam. The runoff losses of fluazinam from a series of pepper grown-lysimeter plots were 0.14~0.90% in the first year, 0.01~0.04% in the second year and 0.16~0.37% in the third year for the mulched contour ridge plots, 0.47~1.59% for the mulched up-down direction ridge plots and 0.07~1.05% for the no-mulched contour ridge plots as the control, and they increased with slope degree. Concentrations of fluazinam in runoff water ranged mostly to 10 ${\mu}gL^{-1}$ at the first runoff event. Erosion rates from plots except the mulched up-down direction ridge plots was 0.00~0.21% for 10% and 20% slope-plots and 0.15~1.05% for 30% slope-plots with different slope degrees. Erosion rates from the mulched up-down direction ridge plots were 0.47~1.59% for 10% slope-plots and 0.75~1.05% for 20% slope-plots. Residues of fluazinam in soil at ten days after the application ranged from 0.007 mg $kg^{-1}$ to 0.059 mg $kg^{-1}$ except the soil under the mulch. After then the fluazinam residue in soil was dissipated at the rate of 20 days of half-life to below 0.01 mg $kg^{-1}$ at 60 days after the application.