• Title/Summary/Keyword: Slope plate

Search Result 137, Processing Time 0.034 seconds

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

Fabrication of Thin Plate of Semisolid Material using Slope Plate Process and Development of Fabrication Apparatus (Slope plate 공법을 이용한 반응고 박판 및 제조 장치 개발)

  • Koo, Ja-Yoon;Bae, Jung-Woon;Jin, Chul-Kyu;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • In this study, semi-solid thin plate of A 356 aluminum alloy was fabricated by using slope plate apparatus and vacuum pressurization. Slope plate was used to produce semi-solid material with spheroidal microstructures. After molten metal was poured into the slope plate connected to the pouring hole of die, semi-solid material flowed into the die cavity by vacuum degree. The primary crystals of the cast metal became spheroidal. In order to increase the working pressure, gas pressurization of U shape was designed for fabrication of thin plate. For 3 bar of gas pressure and 60 mmHg of vacuum degree, thin plate was fabricated without defects on surface.

Effect of Mobile Crane Load on Excavated Slope Stability (이동식 크레인 하중이 굴착사면 안정성에 미치는 영향 분석)

  • Kim, Jeong Kon;Na, Ye Ji;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.18-26
    • /
    • 2021
  • The effect of heavy construction equipment on the excavated slope is investigated by slope stability analysis. A mobile crane with 500 kN capacity is applied as a working load to the background surface of the excavated slope, in both sandy soil and clay, designed to guarantee the safety of slope stability. Major parameters such as the distance between the edge of the slope and the mobile crane, groundwater level, and ground plate size of the mobile crane are considered. Only 23.8% and 14.3% of the analysis models with sandy soil and clay excavated slope, respectively, satisfied the slope stability. By changing the slope of the sandy soil from 1:1.0 to 1:1.2, the number of analysis models securing slope stability increased from 23.8% to 40.5%. For the clay excavated slope, the analysis models securing slope stability increased from 14.3% to 42.9% by changing slope inclination from 1:0.8 to 1:1.2. In addition, it is found that the increase in the size of the ground plate of the mobile crane increases the analysis models that secure slope stability. Therefore, it is an effective way to relax the excavated slope's inclination angle and simultaneously increase the ground plate size to guarantee stability.

A Roll-Bite Profile Map Approach for the Prediction of Front End Bending in Plate Rolling (후판 압연공정에서 선단부 굽힘 예측을 위한 롤 바이트 형상맵 기법에 관한 연구)

  • Byon, S.M.;Lee, J.H.;Kim, S.R.
    • Transactions of Materials Processing
    • /
    • v.20 no.4
    • /
    • pp.284-290
    • /
    • 2011
  • The front end bending(FEB) behavior of material that usually occurs in plate rolling is investigated. In this paper, a rollbite profile map approach that systematically predicts the FEB slope is presented. It is based on the concurrent use of shape factors and reduction ratios to ensure an accurate value of the FEB and its slope. In order to obtain the unit roll-bite profile map, the FEB slope model was decomposed into a temperature deviation component and a roll-velocity deviation component. By mapping the results of a series of finite element analyses to the unit functions of the roll-bite profile map, it was possible to obtain a realistic prediction of the FEB slope applicable to an actual plate rolling process. Thereby, the usefulness of the present approach is clearly demonstrated.

Comparison of Absolute and Differential ECT Signals around Tube Support Plate in Steam Generator

  • Shin, Young-Kil;Lee, Yun-Tai;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In this paper, absolute and differential eddy current signals from various defects in the steam generator tube are numerically predicted and their signal slope characteristics are investigated. The signal changes due to frequency increase are also observed. After studying signal patterns from various defects and frequencies, the analysis of mixed defect signals affected by the presence of a ferromagnetic support plate is attempted. For the signal prediction, axisymmetric finite element modeling is used and this leads us to the slope angle analysis of the signal. Results show that differential signals are useful for locating the position of a defect under the support plate, while absolute signals are easy to presume and interpret even though the effect of support plate is mixed. Combined use of these two types of signals will help us accomplish a more reliable inspection.

The difference in the slope supported system when excavating twin tunnels: Model test and numerical simulation

  • Liu, Xinrong;Suliman, Lojain;Zhou, Xiaohan;Zhang, Jilu;Xu, Bin;Xiong, Fei;Elmageed, Ahmed Abd
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-30
    • /
    • 2022
  • Slope stability during the excavation of twin road tunnels is considered crucial in terms of safety. In this research, physical model testing and numerical analysis were used to investigate the characteristics of the settlement (uz) and vertical stresses (σz) along the two tunnel sections. First, two model tests for a (fill-rock) slope were conducted to study the settlement and stresses in presence and absence of slope support (plate support system). The law and value of the result were then validated by using a numerical model (FEM) based on the physical model. In addition, a finite element model with a slope supported by piles (equivalent to the plate) was used for comparison purposes. In the physical model, several rows of plates have been added to demonstrate the capacity of these plates to sustain the slope by comparing excavating twin tunnels in supported and unsupported slope, the results show that this support was effective in the upper part of the slope, while in the middle and lower part the support was limited. Additionally, the plates appear to induce less settlement in several areas of the slope with differing settlement and stress distribution as compared to piles. Furthermore, as a results of the previous mentioned investigation, there are many factors influence the stress and settlement distribution, such as the slope's cover depth, movement during excavation, buried structures such as the tunnel lining, plates or piles, and the interaction between all of these components.

Safety Assessment to Construction Position of Constructed Steel Structures under Declinating Earth Pressure (편토압을 받는 파형강판 구조물의 시공위치별 안전성 평가)

  • Lee, Sang-Hyun;Lim, Heui-Dae
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • The corrugated steel plate structures is applied to the construction of mountain tunnel portal part with shallow depth, the tunnel on the outskirts of urban areas and ecology move passage. In this study, A finite element method is used for research the behavior of corrugated steel plate structures due to construction position under declinating earth pressure and excavation depth. A finite element method were performed varying construction position(10, 15, 20 and 25m) from slope and excavation depth from surface. The hoop thrust and moment, displacement of corrugated steel plate subjected to construction position and excavation depth is determined from a finite element method. From results of finite element method, it was found that the increase of thrust and the decrease of displacement as the amount of distance increase from slope with construction position. But the thrust and moment, displacement has not different value with excavation depth.

A Study on the Flow Characteristics of a Swash-Plate Piston-Pump Inlet (사판식 피스톤 펌프 흡입구의 유동 특성에 관한 연구)

  • Lee, Jeong-Sil;Jun, Cha-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, a cavitation occurrence in a piston-pump inlet was investigated by simulating the pressure distribution, according to the inlet shape of a variable-displacement swash-plate piston pump that supplies high-pressure oil to control the hydraulic system of a marine engine. Two types of pump inlets with different shapes were cast into impression models, and the models were reverse-engineered by 3D scanning. Then, the hydraulic-pressure distribution was analyzed through finite-element analysis. The results of the analysis confirmed that cavitation occurs more easily in the inlet with a steeper slope during pump operation because the inlet pressure on the valve plate is lower than that of the other pump with a gentler inlet slope.

A Study on the Internal Flow Analysis in Swash Plate Piston Pump for Marine Hydraulic Power Supply (선박 유압공급 장치용 사판식 유압 피스톤 펌프 내부 유동해석에 관한 연구)

  • Yi, Chung-Seob;Lee, Jeong-Sil;Lim, Jong-hak;Gwak, Beom-Seop;Lee, Ho Seong;Song, Chul Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • In this paper, a flow analysis of a swash-plate type hydraulic piston pump installed on a hydraulic flow supply system for marine vessels is presented. A model and governing equations for computational fluid dynamics (CFD) analyses of swash-plate type hydraulic piston pumps were built, and simulation results regarding the internal flow field of the pump were obtained. By analyzing the internal flow of the swash-plate type hydraulic piston pump, we can confirm the time-dependent stroke of each piston as the pump rotates. We also verified that by analyzing the pulsating flow against the slope of the swash plate, the simulation results match well with the experimental results. The natural frequency of the system was computed to be approximately 380 Hz by applying and analyzing the fast Fourier transform (FFT) of each swash plate slope evaluated.

Buckling of rectangular plates with mixed edge supports

  • Xiang, Y.;Su, G.H.
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.401-416
    • /
    • 2002
  • This paper presents a domain decomposition method for buckling analysis of rectangular Kirchhoff plates subjected to uniaxial inplane load and with mixed edge support conditions. A plate is decomposed into two rectangular subdomains along the change of the discontinuous support conditions. The automated Ritz method is employed to derive the governing eigenvalue equation for the plate system. Compatibility conditions are imposed for transverse displacement and slope along the interface of the two subdomains by modifying the Ritz trial functions. The resulting Ritz function ensures that the transverse displacement and slope are continuous along the entire interface of the two subdomains. The validity and accuracy of the proposed method are verified with convergence and comparison studies. Buckling results are presented for several selected rectangular plates with various combination of mixed edge support conditions.