• Title/Summary/Keyword: Slope land

Search Result 675, Processing Time 0.036 seconds

Behavior and Lateral Force of H-piles under lateral Soil Movement in Sand (측방변형을 일으키는 모래지반속의 H형 말뚝에 작용하는 수평력)

  • 김영인
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.44-48
    • /
    • 2002
  • In lateral ground flow, slope stability, and land slide problems, H-piles have often been used, on a horizontally deforming ground, to prevent the failure of mass of soil in a downward and outward movement of a slope. Here, theoretical equations are derived to estimate the lateral force, assuming that the Mohr-Coulomb's plastic states occur in the ground, just around H-piles. In this study, some model experiments were performed to check the lateral forces determined from theoretical equations, using several pile widths, heights and various interval ratios between H-piles for sand specimens. The solution of the theoretical equation, derived from previous studies, showed reasonable characteristics for constants of soil, as well as for the interval, widths, and heights of H-Pile.

Prediction of Potential Landslide Sites Using Determinitstic Model (결정론적 기법을 이용한 산사태 위험지 예측)

  • Cha, Kyung-Seob;Chang, Pyoung-Wuck;Woo, Chull-Woong;Kim, Seong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.37-45
    • /
    • 2005
  • Almost every year, Korea has been suffered from serious damages of lives and properties, due to landslides that are triggered by heavy rains in monsoon season. In this paper, we systematized the physically based landslide prediction model which consisted of 3 parts, infinite slope stability analysis model, groundwater flow model and soil depth model. To evaluate its applicability to the prediction of landslides, the data of actual landslides were plotted on the predicted areas on the GIS map. The matching rate of this model to the actual data was $84.8\%$. And the relation between hydrological and land form factors and potential landslide were analyzed.

MAPPING SOIL ORGANIC MATTER CONTENT IN FLOODPLAINS USING A DIGITAL SOIL DATABASE AND GIS TECHNIQUES: A CASE STUDY WITH A TOPOGRAPHIC FACTOR IN NORTHEAST KANSAS

  • Park, Sunyurp
    • Spatial Information Research
    • /
    • v.10 no.4
    • /
    • pp.533-550
    • /
    • 2002
  • Soil organic matter (SOM) content and other physical soil properties were extracted from a digital soil database, the Soil Survey Geographic (SSURGO) database, to map the amount of SOM and determine its relationship with topographic positions in floodplain areas along a river basin in Douglas County, Kansas. In the floodplains, results showed that slope and SOM content had a significant negative relationship. Soils near river channels were deep and nearly level, and they had the greatest SOM content in the floodplain areas. For the whole county, SOM content was influenced primarily by soil depth and percent SOM by weight. Among different slope areas, soils on mid-range slopes (10-15%) and ridgetops had the highest SOM content because they had relatively high percent SOM content by weight and very deep soils, respectively. SOM content was also significantly variable among different land cover types. Forest/woodland had significantly higher SOM content than others, followed by cropland, grassland, and urban areas.

  • PDF

Vegetation Classification Using Seasonal Variation MODIS Data

  • Choi, Hyun-Ah;Lee, Woo-Kyun;Son, Yo-Whan;Kojima, Toshiharu;Muraoka, Hiroyuki
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.665-673
    • /
    • 2010
  • The role of remote sensing in phenological studies is increasingly regarded as a key in understanding large area seasonal phenomena. This paper describes the application of Moderate Resolution Imaging Spectroradiometer (MODIS) time series data for vegetation classification using seasonal variation patterns. The vegetation seasonal variation phase of Seoul and provinces in Korea was inferred using 8 day composite MODIS NDVI (Normalized Difference Vegetation Index) dataset of 2006. The seasonal vegetation classification approach is performed with reclassification of 4 categories as urban, crop land, broad-leaf and needle-leaf forest area. The BISE (Best Index Slope Extraction) filtering algorithm was applied for a smoothing processing of MODIS NDVI time series data and fuzzy classification method was used for vegetation classification. The overall accuracy of classification was 77.5% and the kappa coefficient was 0.61%, thus suggesting overall high classification accuracy.

Foundmental Study of Prediction of Natural Disaster Using the Aerial Photo Interpretation (항공사진판독에 의한 자연재해예측을 위한 기초적 연구)

  • Kang, In-Joon;Kwak, Jae-Ha;Jung, Jae-Hyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 1992
  • As population is increased, land use types are changed mountainous areas from flatland in Korea. Because natural disaster as landslides occur of life, property, and environmental damage, prediction of landslides have become increasingly important. We focus on the issue for assessment of landslides, not slope stability analysis for a simple slope site. In this study, we could know the correlations of mean, standard deviation for brightness value of imagery by aerial photo scanning. The range of brightness values and standard deviation of landslide area is 35~65 and tend to increment of value, in the every years. When evaluating large regions with past occurrence of landslides, it is possible to search for correlation of site conditions such as degree of slope, soil characteristics, vegetative cover, and rainfall conditions in aerial photo interpretation data.

  • PDF

A Proposal for Risk Evaluation Method of Slope Failure due to Rainfalls (강우 시 사면 붕괴 위험도 평가에 관한 제안)

  • Chae, Jong-Gil;Jung, Min-Su;Tori, Nobuyaki;Okimura, Takashi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.893-903
    • /
    • 2008
  • A method for predicting surface failures which occur during heavy rainfall on mountain slopes is proposed by using the digital land form model that is obtained by reading altitude on a topographical map at 10m grid point space. A depth of a potential failure layer is assumed at each grid point. In the layer, an infiltrated water movement from cell to cell is modeled in the study (cell is a square of the grid). Infiltrated ground water levels which show the three dimensional effects of a topographical factor in an area can be hourly calculated at every cell by the model. The safety factor of every cell is also calculated every hour by the infinite slope stability analysis method with the obtained infiltrated ground water level. Failure potential delineation is defined here as the time when the safety factor becomes less than unity under the assumptions that effective rainfall is 20mm/h and continues 20 hours.

  • PDF

Shallow landslide susceptibility mapping using TRIGRS

  • Viet, Tran The;Lee, Giha;An, Hyun Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.214-214
    • /
    • 2015
  • Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.

  • PDF

Estimation and Spatial Distribution of Monthly FDSI Using AMSR2 Satellite Image-based Soil Moisture in South Korea (AMSR2 위성영상 기반 토양수분을 이용한 우리나라 월별 FDSI 산정 및 공간 분포 특성 분석)

  • Chun, Beomseok;Lee, Taehwa;Jeong, Kwangjune;Shin, Yongchul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.31-43
    • /
    • 2022
  • In this study, we estimated the monthly FDSI (Flash Drought Stress Index) for assessing flash drought on South Korea using AMSR2(Advanced Microwave Scanning Radiometer 2) satellite-based soil moisture footprints. We collected the AMSR2 soil moisture and climate-land surface data from April to November 2018 for analyzing the monthly FDSI values. We confirmed that the FDSI values were high at the regions with the high temperature/evapotranspiration while the precipitation is relatively low. Especially, the regions which satisfied an onset of flash drought (FDSI≧0.71) were increased from June. Then, the most of regions suffered by flash drought during the periods (July to August) with the high temperature and evapotranspiration. Additionally, the impacts of landuse and slope degree were evaluated on the monthly FDSI changes. The forest regions that have the steep slope degree showed the relatively higher FDSI values than the others. Thus, our results indicated that the the slope degree has the relatively higher impact on the onset and increasing of flash drought compared to the others.

Case Study of the Early Stage Vegetation Recovery with Soil Property in the Roadside Slopes of the Expressway (고속도로 비탈면 녹화공법 시험시공지의 토질조건별 초기 녹화효과 사례연구)

  • Jeman Lee;Kyung-Hoon Kim;Gi-Seong Jeon;Sangjun Im
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.2
    • /
    • pp.47-59
    • /
    • 2023
  • This study investigated and analyzed the effects of vegetation on the roadside slopes at the expressway construction sites in order to evaluate the vegetation recovery regarding soil type and revegetation technique. We selected two study sites with an area of 1,000 m2 located in the construction sites of the Korea Expressway Corporation, named Hwado-Yangpyeong Expressway Section 3 and Saemangeum-Jeonju Expressway Section 7. The revegetation was monitored in three plot groups (earth, soft rock, and hard rock slopes), and scored based on the guideline of the Ministry of Land, Transport and Maritime Affairs. The revegatation was generally lower in the Hwado-Yangpyeong site than that of the Saemangeum-Jeonju site. The field monitoring indicated that the revegetation varied with slope aspect and environmental characteristics between plots. the Saemangeum-Jeonju site showed a high overall evaluation score, but there was a slight difference in the score for each plot. This seems to be due to the differences in geographical conditions, construction methods, and site environment between two sites. This study can provide basic information to understand the short-term effects of revegetation techniques in the roadside slopes.

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.