• Title/Summary/Keyword: Slope failure image

Search Result 18, Processing Time 0.036 seconds

Assumption of Failure Surface using Borehole Image Processing System in Failed Rock Slope (Borehole Image Processing System에 의한 붕괴사면의 활동면 추정)

  • Yoo Byung-Ok;Chung Hyung-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.217-239
    • /
    • 1999
  • Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.

  • PDF

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

Analysis of Slope Stability in Slopes of Failed and not Excavated (붕괴된 사면과 굴착되지 않은 사면의 안정성 검토)

  • 유병옥;김경석;이용희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.129-144
    • /
    • 2003
  • Generally, investigation methods of cut slope are conducted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

A Study on Automatic Classification of Characterized Ground Regions on Slopes by a Deep Learning based Image Segmentation (딥러닝 영상처리를 통한 비탈면의 지반 특성화 영역 자동 분류에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung;Kim, Seung Hyeon;Ha, Dae Mok;Choi, Isu
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.508-522
    • /
    • 2019
  • Because of the slope failure, not only property damage but also human damage can occur, slope stability analysis should be conducted to predict and reinforce of the slope. This paper, defines the ground areas that can be characterized in terms of slope failure such as Rockmass jointset, Rockmass fault, Soil, Leakage water and Crush zone in sloped images. As a result, it was shown that the deep learning instance segmentation network can be used to recognize and automatically segment the precise shape of the ground region with different characteristics shown in the image. It showed the possibility of supporting the slope mapping work and automatically calculating the ground characteristics information of slopes necessary for decision making such as slope reinforcement.

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

3D Stereoscopic Terrain Extraction of Road Cut Failure Slope Using Unmanned Helicopter Photography System (무인 헬리콥터 사진촬영시스템을 이용한 도로 절개지 붕괴사면 3차원 입체 지형 추출)

  • Jang, Ho-Sik
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • Acquisition of information on failure slope, which may cause apprehension of second hand damage, requires acquisition of fast and accurate topographical data and efficient expression in indirect surveying method without accessing as needed. Therefore, in this study, the images on the intended area were photographed through hovering in the air by approaching collapsed road cut slope with the use of unmanned helicopter photography system. As a result of comparing the points observed by no prism total station and the 10 coordinate points analyzed through image analysis, the averages of absolute values were shown to be 0.056m in X axis direction, 0.082m in Y axis direction and 0.066m Z axis direction. In addition, the RMSE of the error for 10 points of test points were 0.015636m in X axis direction, 0.021319m in Y axis direction and 0.018734m in Z axis direction. Therefore, this method can determine the range of slope and longitudinal and cross sections of each slope in dangerous area that cannot be approached in relational image matching method for the terrains of such collapsed cut slope.

Application of UAV images for rainfall-induced slope stability analysis in urban areas

  • Dohyun Kim;Junyoung Ko;Jaehong Kim
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.167-174
    • /
    • 2023
  • This study evaluated slope stability through a case study to determine the disaster risks associated with increased deforestation in structures, including schools and apartments, located in urban areas adjacent to slopes. The slope behind the ○○ High School in Gwangju, Korea, collapsed owing to heavy rain in August 2018. Historically, rainwater drained well around the slope during the rainy season. However, during the collapse, a large amount of seepage water flowed out of the slope surface and a shallow failure occurred along the saturated soil layer. To analyze the cause of the collapse, the images of the upper area of the slope, which could not be directly identified, were captured using unmanned aerial vehicles (UAVs). A digital elevation model of the slope was constructed through image analysis, making it possible to calculate the rainfall flow direction and the area, width, and length of logging areas. The change in the instability of the slope over time owing to rainfall lasting ten days before the collapse was analyzed through numerical analysis. Imaging techniques based on the UAV images were found to be effective in analyzing ground disaster risk maps in urban areas. Furthermore, the analysis was found to predict the failure before its actual occurrence.

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.

UAV Aerial Photogrammetry for Cross Sectional Extraction and Slope Stability Analysis in Forest Area (UAV 항공사진을 이용한 산림지 횡단면도 추출 및 사면안정성 평가)

  • Kim, Taejin;Son, Younghwan;Park, Jaesung;Kim, Donggeun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.67-77
    • /
    • 2018
  • The objective of this study is to extract the shape of the slope from the images acquired using UAV and evaluate its suitability and reliability when applied to slope stability analysis. UAV is relatively inexpensive and simple, and it is possible to make terrain survey by generating point clouds. However, the image acquired from UAV can not be directly photographed by the forest canopy due to the influence of trees, resulting in severe distortion of the terrain. In this study, therefore, the effects of forest canopy were verified and the slope stability analysis was performed. Images acquired in winter and summer were used, because summer images are heavily influenced by the forest canopy and winter images are not. As a result of the study, the winter image is suitable for the extraction of slope shape, but severe terrain distortion occurs in the summer image. Therefore, slope stability analysis using slope shape extracted from summer image is impossible, so it should be modified for slope stability analysis. The modified slope did not completely eliminate the distortion of the terrain, but it could express the approximate shape of the slope. As a result of the slope stability analysis, the location and shape of the failure surface are the same, and the error of the safety factor is less than 0.2, which is close to the actual slope.

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.