• Title/Summary/Keyword: Slope effect

Search Result 1,512, Processing Time 0.038 seconds

A Study on Effect of Stabilizing Pile on Stability of Infinite Slope (무한사면의 안정성에 미치는 억지말뚝의 영향에 대한 이론적 연구)

  • Lee, Seung-Hyun;Lee, Su-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.496-503
    • /
    • 2016
  • To analyze an infinite slope that is reinforced with stabilizing piles, the forces on the stabilizing pile were estimated by the theory of plastic deformation and the theory of plastic flow and the effects of diverse factors on the factor of safety of an infinite slope were investigated. According to the results of the analyses, the factor of the safety of the slope reinforced with stabilized piles were increased tremendously and the factor of safety decreased as the center to center distance of the stabilizing pile increased. The effect of the existence of seepage of the infinite slope with stabilizing piles on the factor of safety appears to be insignificant. Considering the formulated factor of safety of an infinite slope with stabilizing piles, the width and length of the element of the infinite slope and force on the stabilizing pile influence the factor of safety of the infinite slope with a stabilizing pile including the soil strength parameter, inclination of the slope and depth of the slope, which are important for calculating the factor of safety of a non-reinforced infinite slope. The factor of safety of an infinite slope with stabilizing piles derived from the theory of plastic deformation were increased significantly with the internal friction angle of the soil, and the minimum and the maximum factor of safety under the conditions considered in this study were 13.7 and 65.6, respectively. As the diameter of the stabilizing pile increased, the forces on the stabilizing pile also increased but the factor of safety of the infinite slope with stabilizing piles decreased due to the effects of the width and the length of the element of the infinite slope. The factor of safety of the infinite slope with stabilizing piles derived from plastic flow were much larger than that of the non-reinforced infinite slope and the factor safety of the infinite slope with a stabilizing pile increased with increasing product of the flow velocity and plastic viscosity ( ) and the factor of safety of the infinite slope with stabilizing piles decreased with increasing center to center distance of the pile.

Stability Analysis of the Reinforced Embankment on Soft Foundations using the Limit Equilibrium Method (한계평형법에 의한 연약지반 보강성토의 안정해석)

  • 고남영;고홍석
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.5
    • /
    • pp.101-110
    • /
    • 1995
  • The use of geotextile as reinforced materials in Soil structures has become widespread throughout the world. Geotextile reinforcement has been used in retaining walls, slope of embankment and especially soft foundation, etc. In the past, however, its design and construction have been performed empirically. In this study, to investigate of the effect of geotextiles reinforced slope of the embankment on a very soft foundation, a limit equilibrium analysis program calculating the safety factor of embankment on very soft foundation was developed. The study was focussed on such factors as type of geotextile, tensile strength, amount of reinforcement, and inclination of embankment. And the 4imit equilibrium analysis program was written on the basis of Low's slope stability theory with some modification. The following conclusions were drawn from this study. (1) The orientation of reinforcement can be assumed either horizontal or tangential to the slip circle. The factor of safety with tangential reinforcement is larger than that with the horizontal reinforcement. (2) In general, the factor of safety increases, as the slope reduces. However, it is preferable to use geotextiles with higher tensile strength rather than to reduce the slope of the embankment, because it is difficult to adjust the slope as desired. (3) The factor of safety obtained by numerical computation is affected only by the tensile strength, but not by the type of the geotextile.

  • PDF

Comparative Leaf Characteristics of Quercus Mongolica and Rhododendron Schilippenbachii Plants Inhabiting at South- and North- Facing Slopes around Mountain Ridge

  • Park, Yong Mok
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1345-1351
    • /
    • 2013
  • Leaf characteristics of two representative deciduous-tree species in Korean peninsula were compared to assess directional ridge effect on leaf traits of both species. Leaf mass per unit area (LMA) of Rhododendron schilippenbachii in south-facing ridge slope was significantly higher than that in north-facing ridge slope, while Quercus mongolica did not change LMA. Leaf mass of Q. mongolica was increased depending on leaf size irrespective of slope. However, leaf mass of R. schilippenbachii changed differently in responding to expansion of leaf area between both slopes resulting from retardation of leaf expansion in south-facing slope. R. schilippenbachii showed higher leaf nitrogen concentration per unit area (LNCA) in south-facing slope than that in north-facing slope, while Q. mongolica indicated no difference in LNCA between southand north-facing slopes. However, both species revealed no significant difference in leaf nitrogen concentration per unit mass (LNCM) between south- and north-facing slopes. LNCA of Q. mongolica was about two times higher than that of R. schilippenbachii. These results indicate that there is a difference in leaf characteristics including leaf thickness and nitrogen allocation between Q. mongolica and R. schilippenbachii, suggesting the difference of plasticity.

Performance Analysis on the Trapezoidal Fins having Different Slope for Enhanced Heat Exchange (열교환 향상을 위한 경사각이 다른 사다리꼴 휜에 대한 성능해석)

  • 강형석;윤세창
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.16-24
    • /
    • 1999
  • Performance of the trapezoidal fins having different upper side slope is investigated by the three dimensional analytic method. It is shown that one equation can be used to analyse the trapezoidal fins having different upper side slope by adjusting the slope factor only. The performances for these fins are represented as a function of the non-dimensional fin length, fin width, Biot number and the slope factor when the remaining variables are fixed arbitrarily. One of the results is that the fin effectiveness increases as Biot number, the non-dimensional fin width and the slope factor decrease and as the non-dimensional fin length increases in the case of Bi $\leq$ 0.1 but the trend of the fin shape effect on the effectiveness is somewhat irregular for higher Biot number(i.e. Bi = 0.3).

  • PDF

Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips

  • Keskin, Mehmet Salih;Laman, Mustafa
    • Geomechanics and Engineering
    • /
    • v.6 no.3
    • /
    • pp.249-262
    • /
    • 2014
  • Tire chips and tire chips-soil mixtures can be used as alternative fill material in many civil engineering applications. In this study, the potential benefits of using tire chips as lightweight material to improve the bearing capacity and the settlement behavior of sand slope was investigated experimentally. For this aim, a series of direct shear and model loading tests were conducted. In direct shear tests, the effect of contents of the tire chips on the shear strength parameters of sand was investigated. Different mixing ratios of 0, 5, 10, 15 and 20% by volume were used and the optimum mixing ratio was obtained. Then, laboratory model tests were performed on a model strip footing on sand slope reinforced with randomly distributed tire chips. The loading tests were carried out on sand slope with relative density of 65% and the slope angle of $30^{\circ}C$. In the loading tests the percentage of tire chips to sand was taken as same as in direct shear tests. The results indicated that at the same loading level the settlement of strip footing on sand-tire chips mixture was about 30% less than in the case of pure sand. Addition of tire chips to sand increases BCR (bearing capacity ratio) from 1.17 to 1.88 with respect to tire chips content. The maximum BCR is attained at tire chips content of 10%.

Reset Waveform Generation Circuit Adapting To Temperature Change (온도 적응형 PDP RESET 파형 발생회로의 개발)

  • Shin Min-Ho;Kim Cheul-U
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.587-591
    • /
    • 2005
  • Driving Waveform of AC PDP in reset periode is increased and decreased with constant slope to improve dark room contrast ratio and image quality. But the slope and magnitude of ramp waveform are related to strong and weak discharge with temperature change in AC PDP. So this paper proposes a methods of changing the slope and magnitude of ramp waveform during reset periode according to temperature change in AC PDP. Experimental variable factors ire chosen to setup slope, setdown slope, and -Vy voltage magnitude in Y sustain electrode. The proposed methods are expected to compensate for effect of the temperature change, causing misfiring in high and low temprature, with varing the slope and magnitude of ramp voltage during reset period and improve image quality.

The Characteristics of Sediment and a Design Method for Preventing Sediment in the beginning Lateral Sewer (단말 오수관거 에서의 퇴적특성과 퇴적방지를 위한 설계법 고찰)

  • Hwang, Hwan Kook;Kim, Young Jin;Han, Sang Jong;Jung, Ho Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.789-797
    • /
    • 2009
  • The flow in the beginning lateral sewer can be characterized as intermittent and unsteady, and a moment maximum flow energy is required to transport fecal solids in the sewer. It is thus difficult to design to satisfy a minimum velocity criteria (0.6m/s), because of the substantially lower discharge in the beginning lateral sewer. This study is the result of a field survey, and aims to determine a design criteria for the minimum slope to prevent sediment in a lateral sewer. The survey performed on the two flat small catchments in Goyang-si consisting of D400mm hume-pipe, aimed to understand the manner in which the scope of a sewer slope has an effect on sediment in the beginning lateral sewer. The survey showed that the sewer slope below 3‰ had sedimentation of 88.7%, while the sewer slope of 3~6‰ had sedimentation of 47.8%. In addition, the minimum design slope was estimated to refer to the result of hydraulic experiments from Public Works Research Institute in Japan. Analysis showed that the D400mm hume pipe should be installed with a slope of 6.5‰ to prevent sediment in the beginning lateral sewer. For future installations, the study results showed that a D300mm plastic pipe requires a minimum slope of 3.5‰, and a D250mm plastic pipe requires a minimum slope of 3.3‰ in the beginning lateral sewer.

The Experimental Study on Mass Nail Reinforcing Effects with Variation of Water Content (함수비 변화에 따른 Mass Nail 공법의 사면 보강 효과에 관한 실험적 연구)

  • Kwon, Kyoung-Jun;Kim, Won-Il;Hong, Chang-Sun;Ahn, Won-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.5
    • /
    • pp.109-116
    • /
    • 2010
  • Infiltration and the rising level of groundwater caused by rainfall are a major cause of the landslide and sliding. In order to secure the safety factor of slope, the slope stabilization and reinforcement works are used to enhance consistency. Nailing, Slope Drainage method and the surface vegetation measures can be simultaneously applied in the Mass Nail method, which is also environmental friendly reinforcement method. To demonstrate the reinforcement effect of a strengthened slope by Mass Nail, the changes in water contents by rainfall were considered while performing Scale Model Test. As a result, safety factor of reinforced slope was about 1.4~2.3 times increased on the unstrength slope. In the case of increasing water content 10% to 22%, The maximum stress was reduced to 12%~24% at the average rate of 18% on the unstrength slope and the reinforced slope by the Mass Nail Method was reduced to 4%~23% at the average rate of 14%.

Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam

  • Tran, The Viet;Trinh, Minh Thu;Lee, Giha;Oh, Sewook;Nguyen, Thi Hai Van
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2015
  • This paper addresses the effects of extreme rainfall on the stability of cut slopes in Yen Bai city, Northern Viet Nam. In this area, natural slopes are excavated to create places for infrastructures and buildings. Cut slopes are usually made without proper site investigations; the design is mostly based on experience. In recent years, many slope failures have occurred along these cuts especially in rainy seasons, resulting in properties damaged and loss of lives. To explain the reason that slope failure often happens during rainy seasons, this research analyzed the influence of extreme rainfalls, initial ground conditions, and soil permeability on the changes of pore water pressure within the typical slope, thereafter determining the impact of these changes on the slope stability factor of safety. The extreme rainfalls were selected based on all of the rainfalls triggering landslide events that have occurred over the period from 1960 to 2009. The factor of safety (FS) was calculated using Bishop's simplified method. The results show that when the maximum infiltration capacity of the slope top soil is less than the rainfall intensity, slope failures may occur 14 hours after the rain starts. And when this happens, the rainfall duration is the deciding factor that affects the slope FS values. In short, cut slopes in Yen Bai may be stable in normal conditions after the excavation, but under the influence of tropical rain storms, their stability is always questionable.

The Use of Piles to Cut Slopes Design in Cohesive Soils (억지말뚝을 이용한 점성토지반 절토사면의 설계)

  • 홍원표;한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.157-170
    • /
    • 1999
  • A new design technique is presented to stabilize cut slopes in cohesive soils by use of piles. The design method can consider systematically factors such as the gradient and height of slope, the number and position of pile's rows, the interval and stiffness of piles, etc. The design method is established on the basis of the stability analysis of slope with rows of piles. The basic concept applied in the stability analysis is that the soil across the open space between piles can be retained by the arching action of the soil, when a row of piles is installed in soil undergoing lateral movement such as landslides. To obtain the whole stability of slope containing piles, two kinds of analyses for the pile-stability and the slope- stability must be performed simultaneously. An instrumentation system has been installed at a cut slope in cohesive soil, which has been designed according to the presented design process. The behavior of both the piles and the soil across the open space between piles is observed precisely. The result of instrumentation shows that the cut slope has been stabilized by the contribution of stabilizing effect of piles on the slope stability in cohesive soil.

  • PDF