• Title/Summary/Keyword: Slope angle control

Search Result 93, Processing Time 0.029 seconds

Current Control of the Forklift using a Fuzzy Controller

  • Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2552-2556
    • /
    • 2005
  • In general, the forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by current control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the forklift is demanded the robust drive mode. Some cases of the mode, there aretrouble in torque control following slope capacity. The control is sensitive concerning about slope angle and output speed, various control method is studied for stability of speed control. In this paper, I apply current control for the self-tuning using the fuzzy controller to obtain robust, stable speed control and use stable, high efficiency control using DSP as main controller for high speed processor, embody dynamic characteristic of control compared the PI controller to the fuzzy controller.

  • PDF

THE SPEED CONTROL OF DC SERIER WOUND MOTOR USING DSP (TMS320F240)

  • Bae, Jong-Il;Je, Chang-Woo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • In general, the electronic forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by speed control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the electronic forklift is demanded the robust drive mode. Some cases of the mode, there are trouble in torque and speed control following slope capacity. The control is sensitive concerning with slope angle and output speed, various control method is studied for stability of speed control. We apply speed controller for the self-tuning using DSP(TMS320F240) as main controller for high speed processor, embody dynamic characteristic of control compared the PI control to the fuzzy control.

  • PDF

Squeal Test Using Lab-Scale Brake Dynamometer for Pad Angle and Negative-slope (랩스케일 브레이크 다이나모 메터를 이용한 패드각도 및 음의 기울기에 따른 스퀼 소음 실험 연구)

  • Nam, Jae-Hyun;Cho, Byung-Jae;Kang, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3158-3163
    • /
    • 2013
  • In this study, squeal noise test was conducted by using the lab-scaled brake dynamometer. Squeal conditions with respect to the angle of the brake pads ($34^{\circ}30^{\circ}26^{\circ}$) and negative slope, were studied. Squeal frequency of the In-plane-like mode was confirmed by hammering test and finite element analysis. This Squeal mode was difficult to control by the pad angle variation. Also the squeal sound was found to be periodic signal which has higher harmonic components. Squeal noise is independent of the negative slope. It implies that squeal noise can reach the stick-slip oscillation.

Automotive Headlight Control System Using Tilt and Photo Sensors (기울기 및 광센서를 이용한 자동차 헤드라이트 자동조절시스템)

  • Kim, Tae-Woong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • This automotive headlight control system is newly proposed that, under my slope degree of the driving mad(flat up-hill, and down-hill) at night driving, the reflecting mirror of the headlight can be automatically controlled for safe driving. At first whether or not any vehicle is driven near is checked by photo sensor. Secondly, using the slope degree of the automotive feedbacked from the tilt sensor, the servo motor with the headlight is controlled to be turned right or down to the suitable angle. The servo motor is appropriately controlled according to road conditions. The proposed headlight control system is designed on the basis of the tested illumination intensity obtained according to any slope degree of roads. Finally, it is confirmed that the test model works very well in the given road conditions and environments.

Mechanical Design and Development of a Digital Tongue Imaging System Equipped with LEDs (LED 광원을 이용한 디지털 혀 영상 촬영장치의 기구설계와 개발)

  • Nam, Dong-Hyun;Kim, Ji-Hye;Lee, Sang-Suk
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.41-48
    • /
    • 2012
  • Objectives: The aims of this study are to design a optimized mechanical structure of digital tongue imaging system (DTIS) equipped with LEDs in aspects of object distance and camera angle of coverage. Methods and Results: We tried to find optimized object distance while recording a rectangular object of common tongue size. In case object distance is 22 cm or less, edge of the rectangle was not taken beyond the shooting range. In contrast, if object distance is 40 cm or more, the rectangle image was too small. Therefore when considering the variation of subjects, we selected distance of 35-40 cm as appropriate object distance for the DTIS. We also tried to find optimized angle between camera view axis and horizontal line. We photographed from the side of the face of 7 adults with exposed tongue. We drew an exposed tongue lines to connect the tongue tip points and the tongue root points by using the photos acquired from the side faces. And then we calculated the tongue exposure angles between the vertical line and the exposed tongue lines. Mean tongue exposure angle was $28.3^{\circ}$ when tongue was lightly exposed and $13.3^{\circ}$ when maximally. So we determined $73^{\circ}$ as appropriate slope angle of part in contact with face of the DTIS and by considering that the standard variation was great, we designed control gears to adjust the slope of the camera view axis and to regulate the object distance. Conclusions: We designed a optimized mechanical structure in object distance and slope angle of part in contact with face of the DTIS.

The Structural Characteristics of the Ankle Joint Complex and Declination of the Subtalar Joint Rotation Axis between Chronic Ankle Instability (CAI) Patients and Healthy Control (만성 발목 불안정성(CAI) 환자와 건강 대조군 간의 발목 관절 복합체 구조적 특징과 목말밑 관절 회전 축 기울기)

  • Kim, Chang Young;Ryu, Ji Hye;Kang, Tae Kyu;Kim, Byong Hun;Lee, Sung Cheol;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.61-70
    • /
    • 2019
  • Objective: This study aimed to investigate the characteristics of the declination of the subtalar joint rotation axis and the structural features of the ankle joint complex such as rear-foot angle alignment and ligament laxity test between chronic ankle instability (CAI) patients and healthy control. Method: A total of 76 subjects and CAI group (N=38, age: $23.11{\pm}7.63yrs$, height: $165.67{\pm}9.54cm$, weight: $60.13{\pm}11.71kg$) and healthy control (N=38, age: $23.55{\pm}7.03yrs$, height: $167.92{\pm}9.22cm$, weight: $64.58{\pm}13.40kg$) participated in this study. Results: The declination of the subtalar joint rotation axis of the CAI group was statistically different from healthy control in both sagittal slope and transverse slope. The rear-foot angle of CAI group was different from a healthy control. Compared to healthy control, they had the structure of rear-foot varus that could have a high occurrence rate of ankle varus sprain. CAI group had loose ATFL and CFL compared to the healthy control. Conclusion: The results of this study showed that the deviation of the subtalar joint rotation axis and the structural features of the ankle joint complex were different between the CAI group and the healthy control and this difference is a meaningful factor in the occurrence of lateral ankle sprains.

Analysis of Debis Flow according to Change of Slope Angle (사면경사 변화에 따른 토석류의 거동 분석)

  • Park, Byung-Soo;Jun, Sang-Hyun;Yoo, Nam-Jae;Han, Kwang-Doo;Yoon, Young-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1294-1301
    • /
    • 2010
  • This study is an experimental research for the dispersion behavior and impact characteristics of debris flow according to change of slope. Large scale experimental setup for the debris flow was established to simulate the artificial rainfall and control the ground slope. Parameters such as materials of debris flow, slope, and length of slope were used for the experiments. After the experiments, it was found that the speed of ground material components was increased about 28~47%. It was found that speed can be increased by increasing the particle size. Furthermore, maximum/final loads for ground material components were increased 89% for the coarse aggregate and 68% for the fine aggregate comparing with sand.

  • PDF

The Predictable Factors of the Postoperative Kyphotic Change of Sagittal Alignment of the Cervical Spine after the Laminoplasty

  • Lee, Jun Seok;Son, Dong Wuk;Lee, Su Hun;Kim, Dong Ha;Lee, Sang Weon;Song, Geun Sung
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.5
    • /
    • pp.577-583
    • /
    • 2017
  • Objective : Laminoplasty is an effective surgical method for treating cervical degenerative disease. However, postoperative complications such as kyphosis, restriction of neck motion, and instability are often reported. Despite sufficient preoperative lordosis, this procedure often aggravates the lordotic curve of the cervical spine and straightens cervical alignment. Hence, it is important to examine preoperative risk factors associated with postoperative kyphotic alignment changes. Our study aimed to investigate preoperative radiologic parameters associated with kyphotic deformity post laminoplasty. Methods : We retrospectively reviewed the medical records of 49 patients who underwent open door laminoplasty for cervical spondylotic myelopathy (CSM) or ossification of the posterior longitudinal ligament (OPLL) at Pusan National University Yangsan Hospital between January 2011 and December 2015. Inclusion criteria were as follows : 1) preoperative diagnosis of OPLL or CSM, 2) no previous history of cervical spinal surgery, cervical trauma, tumor, or infection, 3) minimum of one-year follow-up post laminoplasty with proper radiologic examinations performed in outpatient clinics, and 4) cases showing C7 and T1 vertebral body in the preoperative cervical sagittal plane. The radiologic parameters examined included C2-C7 Cobb angles, T1 slope, C2-C7 sagittal vertical axis (SVA), range of motion (ROM) from C2-C7, segmental instability, and T2 signal change observed on magnetic resonance imaging (MRI). Clinical factors examined included preoperative modified Japanese Orthopedic Association scores, disease classification, duration of symptoms, and the range of operation levels. Results : Mean preoperative sagittal alignment was $13.01^{\circ}$ lordotic; $6.94^{\circ}$ lordotic postoperatively. Percentage of postoperative kyphosis was 80%. Patients were subdivided into two groups according to postoperative Cobb angle change; a control group (n=22) and kyphotic group (n=27). The kyphotic group consisted of patients with more than $5^{\circ}$ kyphotic angle change postoperatively. There were no differences in age, sex, C2-C7 Cobb angle, T1 slope, C2-C7 SVA, ROM from C2-C7, segmental instability, or T2 signal change. Multiple regression analysis revealed T1 slope had a strong relationship with postoperative cervical kyphosis. Likewise, correlation analysis revealed there was a statistical significance between T1 slope and postoperative Cobb angle change (p=0.035), and that there was a statistically significant relationship between T1 slope and C2-C7 SVA (p=0.001). Patients with higher preoperative T1 slope demonstrated loss of lordotic curvature postoperatively. Conclusion : Laminoplasty has a high probability of aggravating sagittal balance of the cervical spine. T1 slope is a good predictor of postoperative kyphotic changes of the cervical spine. Similarly, T1 slope is strongly correlated with C2-C7 SVA.

Study on the Burr Formation in Drilling a Thick Plate (후판의 Drill가공에 있어서 Burr의 생성에 관한 연구)

  • Choe, Seong-Kyu;Yang, Gyun-Eui;Kim, Tae-Yeong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.30-39
    • /
    • 1986
  • The burr worsens the accuracy of a workpiece and decreases a lot of pro- ductivity because it takes so much time and efforts to remove it. In this paper, the height, thickness and size of a drilling burr were derived from the drilling variables of drill diameter, chisel edge angle, web rate =($\Frac{2{\times}\;web\;thickness}{drill\;dia}$) and yielding stress of the workpiece as wel as feed, point angle and helix angle. The theoretical and experimental values of drilling thrust, torque and burr size of the testpiece were analyzed with the method of numerical analysis in a standard drilling condition. The order of choosing the drilling variables for the purpose of controlling the burr size was dealt in this paper with burr forming ratio. The results are as follows: (1) The drill diameter forms 42 percents feed 25 percents point angle 23 percents and web rate, chisel edge angle and gelix angle 5 percents of the partial differential slope of drilling thrust within the usual available ranges of drilling variables. (2) The drill diameter forms 55 percents feed 26 percents web rate 9 percents and chisel edge angle, point angle and helix angle 10 percents of the par- tial differential slope of drilling torque in the usual available ranges of drilling variables. (3) About 70 percents of the burr size can be controlled by feed, 29 percents by web rate in the case of a fixed diameter. It is recommended drilling10 variables to be chosen in the order of feed, web rate, drill diameter, point angle, chisel edge angle and helix angle so as to control the burr size effectively.

  • PDF

Design of Longitudinal Auto-landing Guidance and Control System Using Linear Controller-based Adaptive Neural Network

  • Choi, Si-Young;Ha, Cheol-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1624-1627
    • /
    • 2005
  • We proposed a design technique for auto-landing guidance and control system. This technique utilizes linear controller and neural network. Main features of this technique is to use conventional linear controller and compensate for the error coming from the model uncertainties and/or reference model mismatch. In this study, the multi-perceptron neural network with single hidden layer is adopted to compensate for the errors. Glide-slope capture logic for auto-landing guidance and control system is designed in this technique. From the simulation results, it is observed that the responses of velocity and pitch angle to commands are fairly good, which are directly related to control inputs of throttle and elevator, respectively.

  • PDF