• Title/Summary/Keyword: Slope Structure

Search Result 933, Processing Time 0.028 seconds

The Ecological Characteristics by Slope of an Abies koreana Forest in Seseok of Jirisan National Park (지리산 세석 구상나무림의 사면별 생태적 특성)

  • Noh, Il;Chung, Jae-Min;Kim, Tae-Woon;Tamirat, Solomon;Moon, Hyun-Shik
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.293-302
    • /
    • 2018
  • This study was carried out to provide basic information on efficient preservation and management of an Abies koreana forest through analyzing the ecological characteristics by slope in Seseok, Mt. Jirisan. Soil moisture content at southern and northern slopes was 29.9% and 21.7%, respectively, and there was no significant difference among soil properties between southern and northern slopes. The importance value of A. koreana in the southern and northern slopes was high for tree and subtree layers, respectively. It is noteworthy that many seedling and saplings of A. koreana were present on the southern slope. The species diversity was 0.413 for the tree layer, 0.632 for the subtree layer, and 0.609 for the shrub layer on the southern slope and 0.396 for the tree layer, 0.783 for the subtree layer, and 1.215 for the shrub layer on the northern slope. Evenness and dominance ranged from 0.371 to 0.609 and 0.629 to 0.391 on the southern slope and from 0.380 to 0.968 and 0.620 to 0.032 on the northern slope, respectively. The mortality of A. koreana was 9.6% on the southern slope and 24.4% on the northern slope, a distinct difference between the slopes. The mortality type at two slopes was the highest proportion of standing dead. Annual mean tree ring growth of A. koreana on the southern slope (1.76 mm/yr) was higher than that on the northern slope (1.64 mm/yr).

Impact of Physical and Vegetation Patterns on Parks Environment: A Case Study of Gusan Neighborhood Park, South Korea (도심산림녹지의 식생 및 물리적 구조에 따른 숲 내부 미기상 변화 연구)

  • Kim, Jeong-Ho;Choi, Won-Jun;Lee, Sang-Hoon;Lee, Myung-Hun;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.425-435
    • /
    • 2020
  • This study aims to investigate the impact of the physical structure, such as altitude, slope gradient, slope direction, and topographical structure, and the vegetation pattern, such as existing vegetation, diameter of breast height (DBH), and crown density, on climate. The analysis results showed the significant difference in relative humidity, wind speed, and solar radiation at varying altitudes, the significant difference in all climate factors except for the wind speed at varying slope gradient, and significant difference in temperature and relative humanity at varying slope direction. The topographic structures were divided into valleys, slopes, and ridges. They were found to differ in relative humidity. However, the differences between constant trends and types were found to be insignificant concerning temperature, wind speed, and solar radiation. Significant differences in temperature, relative humidity, and wind speed were recorded with changing existing vegetation. The DBH showed a significant difference in temperature, wind speed, and solar radiation. The crown density showed a significant difference in temperature and solar radiation. The result of the relationship analysis for the analysis of the effect of vegetation pattern and physical structure on the meteorological environment showed that temperature was affected by slope gradient, slope direction, DBH, and crown density. The relative humidity was correlated with the altitude, slope gradient, slope direction, and topological structure in physical structure and the existing vegetation and crow density in vegetation pattern. The wind speed was correlated with the altitude, existing vegetation, and DHB, and the solar radiation was correlated with the slope gradient, DHG, and crown density. The crown density was the most overall significant factor in temperature, relative humidity, and solar radiation, followed by the slope gradient. DBH was also found to be highly correlated with temperature and solar radiation and significantly correlated with wind speed, but there was no statistically significant correlation with relative humidity.

'Comb-Structure' Model for the Shear Analysis of Partially Prestressed Concrete Beams (부분(部分) 프리스트레스트 콘크리트 들보의 전단해석을 위한 '빗 구조' 모델)

  • Kang, Won Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 1992
  • In this study, the 'Comb-structure' model which has been developed from truss analogy is modified in order to be applied to the shear analysis of partially prestressed concrete members. The proposed 'Comb-structure' model is modified so that the position, the slope of concrete compressive chord and the slope of concrete diagonal strut may change according to the magnitude of loads and prestress. For the proposed mechanical model, non-linear beam and truss elements are used. By modifying the 'Compression-Field' theory, the equation to determine the slope angle of concrete diagonal strut can be induced. The anaysis results by the proposed 'Comb-structure' model are compared with the experimental results and validity of model is examined. It shows that the the result of 'Comb-structure' analysis lies between that of the modified M$\ddot{o}$rsch theory and classical M$\ddot{o}$rsch theory, and close to the measured value after cracking. The deflection of the beam and the stress of stirrup show good agreement, so it can be concluded that the proposed 'Comb-structure' analysis model explains the shear behavior of partially prestressed concrte beams after crack initiation.

  • PDF

Evaluation and Prediction of Failure Factors by Quantification Theory(II) on Banking Slopes in Forest Road (수량화(數量化)II류(類)에 의한 임도(林道) 성토사면(盛土斜面)의 붕괴요인(崩壞要人) 평가 (評價) 및 예측(豫測))

  • Cha, Du Song;Ji, Byoung Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.2
    • /
    • pp.240-248
    • /
    • 1999
  • On the basis of data obtained from five forest roads collapsed due to a heavy rainfall of 1995 in Chunchon, Kangwon-do, this study was carried out to evaluate and predict the fill slope failure of forest roads with four factors of forest road structure and those of location condition by using Quantification theory(II). The results were summarized as follows ; In the structure factors of forest road, the fill slope failure was mainly occurred in longitudinal gradients less than $2^{\circ}$ or more than $4^{\circ}$, distance of surface-flow longer than 80m, fill slope length greater than 6m, and fill slope gradients steeper than $35^{\circ}$. In the factors of location condition, the failure was mainly occurred in ridge portion of road position, weathered rock and soft rock of constituent material, slope gradients in the range from $35^{\circ}$ to $45^{\circ}$, and concave and convex of longitudinal slope forms. The priority order for factors influencing on fill slope failure was ranked by fill slope length, constituent material, road position, and so on. And the rate of correct discrimination by analysis of fill slope failure was estimated at the high prediction of 86.5%.

  • PDF

Forest Structure in Relation to Slope Aspect and Altitude in the Valley Forests at Songgyesa-Motbong-Wolhatan Area, Deogyusan National Park (백두대간 덕유산국립공원 송계사-못봉-월하탄지역 계곡부의 사면방향과 해발고에 따른 산림구조)

  • 박인협;최윤호
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.124-130
    • /
    • 2004
  • The valley forests at Songgyesa-Motbong-Wolhatan Area in Deogyusan National Park were studied to investigate forest structure in relation to aspect and altitude of the slope. Density, mean DBH, mean height and basal area of the tree and subtree layers in the north-facing slope were greater than those in the south-facing slope. The impotance percentage of Fraxinus mandshurica and Carpinus cordata increased with increasing elevation while those of Quercus serrata and Quercus aliena decreased. Species diversity of the north-facing slope was 1.362 and that of the south-facing slope was 1.242. There was a tendency that number of species and species diversity decreased with increasing elevation. The result of cluster analysis for the tree and sub-tree layer indicated that the studied forests were classified into broad-leaved tree species community at the low and middle elevation belts of the south-facing slope and the north-facing slope, Fraxinus mandshurica-Quercus mongolica community at the high elevation belts of the south-facing slope and the north-facing slope and Quercus mongolica community at the top area. There were significantly positive correlations in the importance percentages among Quercus serrata, Betuzo davurica and Tilia amurensis. Carpinus laxiflora was significantly correlated with Cornus controversa, Tilia amurensis and Lindera obtusiloba. There was significantly negative correlation between Fraxinus mandshurica and Pinus densiflora.

Slope Behavior Analysis Using the Measurement of Underground Displacement and Volumetric Water Content (지중 변위와 체적 함수비 계측을 통한 사면 거동 분석)

  • Kim, Yongseong;Kim, Manil;Bibek, Tamang;Jin, Jihuan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.29-36
    • /
    • 2018
  • Several studies have been conducted on monitoring system and automatic measuring instruments to prevent slope failure in advance in Korea and overseas. However, these studies have quite complex structure. Since most of the measurement systems are installed on the slope surface, the researches are carried on the measurement system that detects sign of slope collapse in advance and alerts are still unsatisfactory. In this study, slope collapse experiments were carried out to understand the slope failure mechanism according to rainfall conditions. The water content and displacement behavior at the early stage of the slope failure were analyzed through the measurement of the ground displacement and water content. The results of this study can be used by local government as a basic data for the design of slope failure alarm system to evacuate residents in case of slope failure or landslide due to heavy rainfall.

Application of Photogrammetry Method to Measurement of Ground-Surface Displacement on the Slope (사면의 지표변위계측을 위한 사진측량기법의 적용)

  • Han, Jung-Geun;Bae, Sang-Ho;Oh, Da-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • The existing measurement system to ground-surface displacement survey of the slope has been including the hazard for the measure in site and the difficulty for install, maintenance and control of expensive instruments, which are impossible of whole survey on the slope surface. To overcome of those defects, Softcopy Photogrammertry method is used, which can measure displacement of ground-surface on the slope and structure deformation vectors. Recently, the survey methods applying the advantages of Photogrammetry and Digital Photogrammetry Survey are widely used. In this study, therefore, the development and application of the new instrument mechanism on the the site example are studied. Through the application of Softcopy Photogrammetry, the 3-D data of ground surface on the dangerous slope could be effectively obtained at the long distance, which are obtained through the reform process of contour line. Those are different to the results of the Close-Range Photogrammetry analysis. In ground instrumentation parts, the new practical system shall be the technical base to improve of the instrument machine as well as can be widely applied in civil engineering and others branch.

  • PDF

Displacements Behavior of Rock Slope by Shaking Table Test (진동대 실험을 통한 암반비탈면의 변위 거동 특성)

  • Yoon, Won-Sub;Kang, Jong-Chul;Park, Yeon-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.245-254
    • /
    • 2020
  • This study investigated the so far little-researched characteristics of the behaviors of rock slopes at the time of an earthquake. For the selection of the rock block, a proper model was formed by applying the similarity in consideration of the roughness and strength of the rock slope(10m) on the site, and shaking table tests were carried out according to seismic excitement acceleration, and seismic waves. In the case of the inclination angle of the joint plane of 20°, the long period wave at 0.3g or more at the time of the seismic excitement surpassed the length of 100mm, the permissible displacement (0.01H, H:slope height), which brought about the collapse of the rock; the short period wave surpassed the permissible displacement at 0.1g, which caused the collapse of the slope. The rock slope was close to a rigid block and a structure more vulnerable to the long period wave than to the short period wave. It collapsed in the short period wave even at the seismic amplitude smaller than the maximum design acceleration in Korea.

The Effect of Wave Control in the Harbor by the Fixed Floating Structure (고정 부유 구조물에 의한 항만정온도의 제어효과)

  • Kim H.P.;Lee J.W.
    • Journal of Korean Port Research
    • /
    • v.7 no.1
    • /
    • pp.79-88
    • /
    • 1993
  • This study deals with the case of a fixed floating structure(FFS) at the mouth of a rectangular harbor under the action of waves represented by the linear wave theory. Modified forms of the mild-slope equation is applied to the propagation of regular wave over constant water depth. The model is extended to include bottom friction and boundary absorption. A hybrid element approximation is used for calculation of linear wave oscillation in and near coastal harbor. Modification of the model was necessary for the FFS. For the conditions tested, the results of laboratory experiments by Ippen and Goda(1963), and Lee (1969) are compared with the calculated one from this model. The cases of flat cylinderical structures, both fixed and floating, were taken to be in an intermediate water depth.

  • PDF

Evaluation and Classification System of Slope using the Slope Code System (SCS) (사면기호시스템을 이용한 사면의 평가 및 분류시스템 제안)

  • Jang, Hyun-Sic;Kim, Ji-Hye;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.383-396
    • /
    • 2014
  • The condition, characteristics, and stability of slopes, as well as the consequences of slope failure, need to be understood for the proper stabilization of slopes and preclusion of potential disasters arising from slope failure. Here, a slope code system (SCS) that succinctly and accurately reflects the various conditions of a slope is proposed. The SCS represents the condition, characteristics, and geotechnical stability of slopes, as well as the consequences of slope failure, and the method is quickly and easily applied to a given slope. The SCS comprises five elements: 1) the slope material; 2) the genetic origin (rock type) and geological structure of the slope; 3) the geotechnical stability of the slope; 4) the probability of failure and remedial works made upon the slope; and 5) the consequences of failure. A letter code is selected from each element, and the result of the evaluation and classification of the slope is given as a five-letter code. Because the condition, characteristics, and geotechnical stability of a slope, as well as the consequences of slope failure, are provided by the SCS, this system will provide an effective mechanism for the maintenance and management of slopes, and will also allow more informed decision-making for determining which slopes should be prioritized for remedial measures.