• Title/Summary/Keyword: Slope Stability Analysis

Search Result 907, Processing Time 0.027 seconds

Stability Analysis of Marine Structure Foundation Constructed by Deep Mortar Piles (심층몰탈파일로 조성된 항만구조물 기초의 안정성 검토)

  • 천병식;여유현;김경민;양진석;김도식
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.228-233
    • /
    • 2001
  • In this case study, under conideration of field situations, such as increase of water level, height increment of the marine structure, dredging and backfill, the stability analysis of sliding and lateral flow of the marine structure in OOOharbor was carried out, and foundation reinforcement methods was presented. based on the results of site investigation, the stability analysis of slope sliding and lateral flow was performed as following. In section BH-1, 2, the analysis was performed in two cases that the marine structure was heightened and filled, and not heightened and filled. In section BH-1, 4, heightened and filled. The analysis results showed that the stabilities of slope sliding and lateral flow in section BH-1, 2, 3, 4 were unstable. After additional reinforcements with Deep Mortar Pile, the stabilities in section BH-1, 2, 3, 4 were evaluated as efficiently large.

  • PDF

Probability Analysis of Rock Slope Stability using Zoning and Discontinuity Persistence as Parameters (사면의 구역 및 절리의 연장성을 고려한 암반사면의 안정성 확률해석)

  • Jang, Bo-An;Sung, Suk-Kyung;Jang, Hyun-Sic
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.155-167
    • /
    • 2010
  • In analysis of slope stability, deterministic analysis which yields a factor of safety has been used until recently. However, probability of failure is considered as a more efficient method because it deals with the uncertainty and variability of rock mass. In both methods, a factor of safety or a probability of failure is calculated for a slope although characteristics of rock mass, such as characteristics of joints, weathering degree of rock and so on, are not uniform throughout the slope. In this paper, we divided a model slope into several zones depending on conditions of rock mass and joints, and probabilities of failure in each zone are calculated and compared with that calculated in whole slope. The persistence of joint was also used as a parameter in calculation of probability of failure. A rock slope located in Hongcheon, Gangwondo was selected and the probability of failure using zoning and persistence as parameter was calculated to confirm the applicability of model analysis.

Application of Environmentally friendly block for the slope stability and protection of Rural Housing (농가주택 법면 보호공을 위한 환경친화블럭의 적용성 평가)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul;Cho, Cheonhee;Han, Hyungu
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.101-112
    • /
    • 2000
  • Green environment is most important factor to human being taking a side view of psychological aspect. But, as the civilization progresses rapidly, the green environment decreases. At present, various environmentally friendly methods are developed to prevent the ill effect of the concretes. n this study, Ecostone retaining wall method, which is a kind of environmentally friendly block, are used for verifying the application to the slope stability and protection of rural hosing. In case of rural hosing and structure, the height of the slope is not high and additional loading doesn't act on the slope except the gravity loading of housing and structure. From the result of the stability analysis of Ecostone, 3m to 7m Ecostone retaining wall can have an equivalence capacity comparing with the concrete retaining wall. Therefore, Ecostone method can apply to retaining wall with the structural safety and environmentally friendly aspect using the plants and vegetation.

  • PDF

Analysis of slope stability based on evaluation of force balance

  • Razdolsky, A.G.;Yankelevsky, D.Z.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.313-334
    • /
    • 2005
  • The paper presents a new approach for the analysis of slope stability that is based on the numerical solution of a differential equation, which describes the thrust force distribution within the potential sliding mass. It is based on the evaluation of the thrust force value at the endpoint of the slip line. A coupled approximation of the slip and thrust lines is applied. The model is based on subdivision of the sliding mass into slices that are normal to the slip line and the equilibrium differential equation is obtained as the slice width approaches zero. Opposed to common iterative limit equilibrium procedures the present method is straightforward and gives an estimate of slope stability at the value of the safety factor prescribed in advance by standard requirements. Considering the location of the thrust line within the soil mass above the trial slip line eliminates the possible development of a tensile thrust force in the stable and critical states of the slope. The location of the upper boundary point of the thrust line is determined by the equilibrium of the upper triangular slice. The method can be applied to any smooth shape of a slip line, i.e., to a slip line without break points. An approximation of the slip and thrust lines by quadratic parabolas is used in the numerical examples for a series of slopes.

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

Stability analysis of homogeneous slopes with benches

  • Zhao, Lianheng;Xia, Peng;Xie, Rongfu;Li, Liang;Zhang, Yingbin;Cheng, Xiao
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.517-533
    • /
    • 2017
  • In this paper, with a graphical approach, a series of stability charts for homogeneous slopes with benches are presented based on the upper bound limit analysis theory and strength reduction technique. The objective function of the slope safety factor $F_s$ is optimized by the nonlinear sequential quadratic programming, and a substantial number of examples are illustrated to use the stability charts for homogeneous slopes with benches driven by only the action of the soil weight. These charts can be applied to quick and accurate estimations of the stability status of homogeneous slopes with benches. Moreover, the failure modes and the formula for safety factor Fs of homogeneous slopes with benches are provided to illustrate the stability analysis of slopes with benches, which is validated by samples.

Optimum Design of a Simple Slope considering Multi Failure Mode (다중 파괴모드를 고려한 단순 사면의 최적 설계)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. Optimum design to determine angle of a simple slope is executed for multi failure mode using linear programming. Because of complex consideration for various failure shapes and modes, it is possible to secure advanced safety by using simultaneous failure probability.

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.

Reliability Analysis of Slopes Using ANN-based Limit-state Function (인공신경망 기반의 한계상태함수를 이용한 사면의 신뢰성해석)

  • Cho, Sung-Eun;Byeon, Wi-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.117-127
    • /
    • 2007
  • Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of them are connected to the uncertainties of soil properties involved in the analysis. In this paper, a numerical procedure for integrating commercial finite difference method into probabilistic analysis of slope stability is presented. Since the limit-state function cannot be expressed in an explicit form, the ANN-based response surface method is adopted to approximate the limit-state function and the first-, second-order reliability method and the Monte Carlo simulation technique are used to calculate the probability of failure. Probabilistic stability assessments for a hypothetical two-layer slope and the Sugar Creek embankment were performed to verify the application potential to the slope stability problems. The examples show the successful implementation and the possibility of the extension of the proposed procedure to the variety of geotechnical engineering problems.

Reinforcement Effect of Marine Structure Foundation by Column Jet Method (CJM 그라우팅에 의한 호안구조물의 기초보강효과)

  • 천병식;양형칠
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.128-131
    • /
    • 2001
  • The purpose of this study is to investigate the application of Column Jet Method(CJM) as countermeasure against settlement and slope sliding of existing marine structure due to embankment load behind reclaimed revetment. CJM is to make high-strengthened body by compacting and grouting cement mortar after forming artificial space in the ground with ground relaxition machine or high pressure water jetting. Before the ground was reinforced by CJM, the result of slope stability analysis was not satisfy the allowable safe ratio, but after the ground was reinforced by CJM, the stability of slope was over the allowable safe ratio and stable, Therefor, the application of CJM to restraint settlement and sliding of marine structure was very satisfactory.

  • PDF