• Title/Summary/Keyword: Slit wall

Search Result 87, Processing Time 0.027 seconds

Design of Broadband Spiral Antenna for Non-Linear Junction Detector (비선형 소자 탐지용 광대역 스파이럴 안테나의 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik;Lee, Kwang-Kun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • This paper presents a design of spiral antenna with broad bandwidth for non-linear junction detector(NLJD). An elliptical patch as radiating element located on center position of radiating surface, as well as the spiral elements on radiating surface was designed for broad bandwidth of spiral antenna. An antenna ground structure generating the multi resonance by spiral slit inserted on ground surface was also proposed. In order to realize high directivity and high gain of the proposed antenna, the cavity wall made of Fr4-epoxy and the metal cap were considered in design. As a result, the calculated gain of antenna with metal cap was improved about 3 dB with comparison of antenna without metal cap and the measured main beam directivity toward -z axis direction agreed well with calculation result. The measured axial ratio satisfied the circular polarization within -z axis ${\pm}45^{\circ}$ at design frequency bands and showed reasonable agreement with prediction.

Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores: for the Case of Nonlinear Poisson-Boltzmann Electric Field (하전된 멤브레인 미세기공에서의 계면동전기적 유동에 의한 흐름전위: 비선형 Poisson-Boltzmann 전기장을 갖는 경우)

  • Myung-Suk Chun
    • Membrane Journal
    • /
    • v.13 no.1
    • /
    • pp.37-46
    • /
    • 2003
  • The electrokinetic effect can be found in cases of the fluid flowing across the charged membrane micropores. The externally applied body force originated from the electrostatic interaction between the nonlinear Poisson-Boltzmann field and the flow-induced electrical field is taken into the equation of motion. The electrostatic potential profile is computed a priori by applying the finite difference scheme, and an analytical solution to the Navier-Stokes equation of motion for slit-like pore is obtained via the Green's function. An explicit analytical expression for the flow-induced streaming potential is derived as functions of relevant physicochemical parameters. The influences of the electric double layer, the surface potential of the wall, and the charge condition of the pore wall upon the velocity profile as well as the streaming potential are examined. With increasing of either the electric double layer thickness or the surface potential, the average fluid velocity is entirely reduced, while the streaming potential increases.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner (Gun식 가스버너의 연소실내 난류 선회유동장 고찰)

  • Kim, Jang-Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

Reduction of Normal Shock-Wave Oscillations by Turbulent Boundary Layer Flow Suction (경계층 유동의 흡입에 의한 수직충격파 진동저감)

  • Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1229-1237
    • /
    • 1998
  • Experiments of shock-wave/turbulent boundary layer interaction were conducted by using a supersonic wind tunnel. Nominal Mach number was varied in the range of 1.6 to 3.0 by means of different nozzles. The objective of the present study is to investigate the effects of boundary layer suction on normal shock-wave oscillations caused by shock wave/boundary layer interaction in a straight duct. Two-dimensional slits were installed on the top and bottom walls of the duct to bleed turbulent boundary layer flows. The bleed flows were measured by an orifice. The ratio of the bleed mass flow to main mass flow was controlled below the range of 11 per cent. Time-mean and fluctuating wall pressures were measured, and Schlieren optical observations were made to investigate time-mean flow field. Time variations in the shock wave displacement were obtained by a high-speed camera system. The results show that boundary layer suction by slits considerably reduce shock-wave oscillations. For the design Mach number of 2.3, the maximum amplitude of the oscillating shock-wave reduces by about 75% compared with the case of no slit for boundary layer suction.

Effect of Cingulate Cortical Ablation upon Gastric Secretion in Rats (흰쥐에서 대상회전 제거가 위액분비에 미치는 영향)

  • Park, Hyoung-Jin;Ahn, Byung-Tae;Jo, Yang-Hyeok
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.67-71
    • /
    • 1977
  • This study was undertaken to investigate the effect of cingulate cortical ablation upon gastric secretion and its components in rats. 23 male rats were divided into the cingulate(N=9) and the operated control(N= 14) groups. Cingulate cortex was ablated through a slit-shaped opening(1 mm in width, 5 mm in length) which was made symmetrically on both sides of, and parallel to, the sagittal suture by removing a bone flap from frontal bone on each side. In the operated control group, the surgical procedure was ended by the removal of the bone flap. Under light ether anesthesia, experimental animals were placed in a restraining jacket of fine mesh wire and gastric juice was collected for 5 hours via a canula which had been inserted through the anterior abdominal wall into the antral portion of the lumen of the stomach. Volume of the gastric juice was measured, and total acid output and free acid output were titrated with 0.04 N NaOH solution by using phenolphthalein and Topfer's reagent at indicator, and chloride ion output was estimated by means of chloridometer. Results obtained were that volume, total acid output, free acid output and chloride ion output of the gastric juice were higher significantly in the cingulate group than in the operated control group. It is inferred from the above results that the cingulate cortex exerts a fascilitatory influence upon gastric secretion and acid output in rats.

  • PDF

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

Optimum Design of a Liquid Film Thickness Measurement Device Using Electric Conductance for Impingement Liquid Film (충돌 액막 분석을 위한 전기전도 액막 두께 측정장치 최적설계)

  • Lee, Hyeongwon;Lee, Hyunchang;Kim, Taesung;Ahn, Kyubok;Yoon, Youngbin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2018
  • To analyze the film cooling in a liquid rocket engine, it is necessary to understand the characteristics of the wall-impingement liquid film. We designed an optimal two-dimensional device for measuring the thickness of the liquid film thickness. This device quantitatively measures the liquid-film thickness distribution. In previous liquid-film thickness measuring devices, the liquid film was formed over the entire area of the sensor. However, its formation depended on injection conditions. To compensate for this, optimal resistors are selected. Additionally, saturation variations with partial saturation are analyzed. Furthermore, calibration using the enhanced plate method is conducted with improvements in spatial resolution. The device designed here can be used to analyze the properties of an impingement liquid film with a slit injector. This study can be used for film-cooling analysis in liquid rocket engines.

Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar (Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가)

  • Song, Yo-Jin;Kim, Keon-Ho;Lee, Dong-Heub;Hwang, Won-Joung;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.318-325
    • /
    • 2011
  • Pitch pine (Pinus rigida Miller) retaining walls using Steel bar, of which the constructability and strength performance are good at the construction site, were manufactured and their strength properties were evaluated. The wooden retaining wall using Steel bar was piled into four stories stretcher and three stories header, which is 770 mm high, 2,890 mm length and 782 mm width. Retaining wall was made by inserting stretchers into Steel bar after making 18 mm diameter of holes at top and bottom stretcher, and then stacking other stretchers and headers which have a slit of 66 mm depth and 18 mm width. The strength properties of retaining walls were investigated by horizontal loading test, and the deformation of structure by image processing (AlCON 3D OPA-PRO system). Joint (Type-A) made with a single long stretcher and two headers, and joint (Type-B) made with two short stretchers connected with half lap joint and two headers were in the retaining wall using Steel bar. The compressive shear strength of joint was tested. Three replicates were used in each test. In horizontal loading test the strength was 1.6 times stronger in wooden retaining wall using Steel bar than in wooden retaining wall using square timber. The timber and joints were not fractured in the test. When testing compressive shear strength, the maximum load of type-A and Type-B was 130.13 kN and 130.6 kN, respectively. Constructability and strength were better in the wooden retaining wall using Steel bar than in wooden retaining wall using square timber.

An Evaluation of In-situ the Pullout Resistance of Chain Reinforcement (체인 보강재의 현장 인발저항력 평가)

  • Kim, Sang-Su;Yu, Chan;Lee, Bong-Jik;Shin, Bang-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 2002
  • An in-situ experiment was performed to evaluate the pullout resistance capacity of chains which is used as a reinforcement of reinforced earth wall. It was also considered that chain was combined with a bar or L-type steel angle by the transverse reinforcement member in the experiment. About 80 pullout tests were peformed with varying the lengths of chain(2.0m, 2.5m, and 3.0m), the combination of each transverse members(chain only, chain+bar, or chain+angle), and the vertical placement of reinforcements. In the case that uses a chain only and a chain combined with bar, the maximum displacement was about 150mm and load continuously increased to the ultimate tensile strength of chain, and then tension failure of chains occurred. But in the case of a chain combined with angle, the displacement decreased to about 100mm and so it was expected that this combination can constrain the displacement of chain. On the other hand, comparing the yielding pullout load measured in the field to that calculated by theoretical equation, it is shown that measured values are 1.2~3.0 times greater than those of calculated values according to the length of chain, normal vertical stress, and the combination of chain with transverse members. However, the difference in the increment of yielding pullout load between bar and angle is not clear but it appears almost the same increment. It is expected that chain can be safely used as reinforcements of reinforced earth wall, although a theoretical estimation of the pullout resistance capability of chain is too conservative.